Size distributions of submicrometer aerosols from cooking

Although gas stove usage varies from country to country, it is still one of the major indoor combustion sources. In order to assess the health effects of using gas stoves, the physical characteristics of the particle emissions from cooking were conducted in a first-floor apartment in the Taipei area...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environment international 1993, Vol.19 (2), p.147-154
Hauptverfasser: Li, Chih-Shan, Lin, Wen-Hai, Jenq, Fu-Tien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 2
container_start_page 147
container_title Environment international
container_volume 19
creator Li, Chih-Shan
Lin, Wen-Hai
Jenq, Fu-Tien
description Although gas stove usage varies from country to country, it is still one of the major indoor combustion sources. In order to assess the health effects of using gas stoves, the physical characteristics of the particle emissions from cooking were conducted in a first-floor apartment in the Taipei area. The particle size distributions from scrambling eggs, frying chicken, and cooking soup were measured in the kitchen by a high resolution particle sizer, which could measure the particles in the size range of 0.01 μm to 1 μm. The concentrations of the submicrometer particles increased significantly from 15 000 cm −3 to 150 000 cm −3 during cooking. Additionally, the ultrafine particles constituted 60%–70% of the total submicron aerosols. The changes in the size distributions and the concentrations of the submicrometer aerosols before, during, and after the aerosol generations were compared. On the average, the median diameters of scrambling eggs, frying chicken, cooking soup, and of the background conditions were 40 nm, 50 nm, 30 nm, and 70 nm, respectively. Regarding the surface area-weighted size distributions, the surface median diameters of the four situations were 180 nm, 300 nm, 150 nm, and 220 nm, respectively. Furthermore, the volume median diameters in the conditions mentioned above were almost similar, namely 300–350 nm.
doi_str_mv 10.1016/0160-4120(93)90365-O
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6099895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016041209390365O</els_id><sourcerecordid>16411050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-ccc9cfbd0ba1976deff5ad3e4f2e55bce159e40254693dcdeae86ebf398eb9a53</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVpoNtN_0EOppTQHJxI1oetSyAs-YLAHpKchTweJWq9VqrxBtpfH7u75NgehoHhmRneh7EjwU8FF-ZsKl4qUfHvVp5YLo0u1x_YQjS1LE2t-Ue2eEc-sc9EPzjnlWr0gtn7-AeLLtKYY7sdYxqoSKGgbbuJkNMGR8yFx5wo9VSEaVJASj_j8HTIDoLvCb_s-5I9Xl0-rG7Ku_X17erirgTVNGMJABZC2_HWC1ubDkPQvpOoQoVat4BCW1S80spY2UGHHhuDbZC2wdZ6LZfs6-5uojE6gjgiPEMaBoTRGW5tY2foeAe95PRrizS6TSTAvvcDpi05YZQQXPP_g0pOZup6AtUOnCwQZQzuJceNz7-d4G627malblbqrHR_rbv1tPZtf98T-D5kP0Ck911lqqZWcsLOdxhO5l4j5jkYDoBdzHOuLsV__3kDf6OWyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14302477</pqid></control><display><type>article</type><title>Size distributions of submicrometer aerosols from cooking</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Chih-Shan ; Lin, Wen-Hai ; Jenq, Fu-Tien</creator><creatorcontrib>Li, Chih-Shan ; Lin, Wen-Hai ; Jenq, Fu-Tien</creatorcontrib><description>Although gas stove usage varies from country to country, it is still one of the major indoor combustion sources. In order to assess the health effects of using gas stoves, the physical characteristics of the particle emissions from cooking were conducted in a first-floor apartment in the Taipei area. The particle size distributions from scrambling eggs, frying chicken, and cooking soup were measured in the kitchen by a high resolution particle sizer, which could measure the particles in the size range of 0.01 μm to 1 μm. The concentrations of the submicrometer particles increased significantly from 15 000 cm −3 to 150 000 cm −3 during cooking. Additionally, the ultrafine particles constituted 60%–70% of the total submicron aerosols. The changes in the size distributions and the concentrations of the submicrometer aerosols before, during, and after the aerosol generations were compared. On the average, the median diameters of scrambling eggs, frying chicken, cooking soup, and of the background conditions were 40 nm, 50 nm, 30 nm, and 70 nm, respectively. Regarding the surface area-weighted size distributions, the surface median diameters of the four situations were 180 nm, 300 nm, 150 nm, and 220 nm, respectively. Furthermore, the volume median diameters in the conditions mentioned above were almost similar, namely 300–350 nm.</description><identifier>ISSN: 0160-4120</identifier><identifier>EISSN: 1873-6750</identifier><identifier>DOI: 10.1016/0160-4120(93)90365-O</identifier><identifier>CODEN: ENVIDV</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>03 NATURAL GAS ; 030700 - Natural Gas- Waste Management ; 540120 - Environment, Atmospheric- Chemicals Monitoring &amp; Transport- (1990-) ; AEROSOLS ; AIR POLLUTION ; APPLIANCES ; Applied sciences ; Atmospheric pollution ; BURNERS ; CHEMICAL REACTIONS ; COLLOIDS ; COMBUSTION ; DISPERSIONS ; ENERGY SOURCES ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; FLUIDS ; FOOD PROCESSING ; FOSSIL FUELS ; FUEL GAS ; FUELS ; GAS BURNERS ; GAS FUELS ; GASES ; INDOOR AIR POLLUTION ; Indoor pollution and occupational exposure ; NATURAL GAS ; OXIDATION ; PARTICLE SIZE ; POLLUTION ; PROCESSING ; SIZE ; SOLS ; STOVES ; THERMOCHEMICAL PROCESSES</subject><ispartof>Environment international, 1993, Vol.19 (2), p.147-154</ispartof><rights>1993</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-ccc9cfbd0ba1976deff5ad3e4f2e55bce159e40254693dcdeae86ebf398eb9a53</citedby><cites>FETCH-LOGICAL-c488t-ccc9cfbd0ba1976deff5ad3e4f2e55bce159e40254693dcdeae86ebf398eb9a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/016041209390365O$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4628743$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6099895$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chih-Shan</creatorcontrib><creatorcontrib>Lin, Wen-Hai</creatorcontrib><creatorcontrib>Jenq, Fu-Tien</creatorcontrib><title>Size distributions of submicrometer aerosols from cooking</title><title>Environment international</title><description>Although gas stove usage varies from country to country, it is still one of the major indoor combustion sources. In order to assess the health effects of using gas stoves, the physical characteristics of the particle emissions from cooking were conducted in a first-floor apartment in the Taipei area. The particle size distributions from scrambling eggs, frying chicken, and cooking soup were measured in the kitchen by a high resolution particle sizer, which could measure the particles in the size range of 0.01 μm to 1 μm. The concentrations of the submicrometer particles increased significantly from 15 000 cm −3 to 150 000 cm −3 during cooking. Additionally, the ultrafine particles constituted 60%–70% of the total submicron aerosols. The changes in the size distributions and the concentrations of the submicrometer aerosols before, during, and after the aerosol generations were compared. On the average, the median diameters of scrambling eggs, frying chicken, cooking soup, and of the background conditions were 40 nm, 50 nm, 30 nm, and 70 nm, respectively. Regarding the surface area-weighted size distributions, the surface median diameters of the four situations were 180 nm, 300 nm, 150 nm, and 220 nm, respectively. Furthermore, the volume median diameters in the conditions mentioned above were almost similar, namely 300–350 nm.</description><subject>03 NATURAL GAS</subject><subject>030700 - Natural Gas- Waste Management</subject><subject>540120 - Environment, Atmospheric- Chemicals Monitoring &amp; Transport- (1990-)</subject><subject>AEROSOLS</subject><subject>AIR POLLUTION</subject><subject>APPLIANCES</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>BURNERS</subject><subject>CHEMICAL REACTIONS</subject><subject>COLLOIDS</subject><subject>COMBUSTION</subject><subject>DISPERSIONS</subject><subject>ENERGY SOURCES</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>FLUIDS</subject><subject>FOOD PROCESSING</subject><subject>FOSSIL FUELS</subject><subject>FUEL GAS</subject><subject>FUELS</subject><subject>GAS BURNERS</subject><subject>GAS FUELS</subject><subject>GASES</subject><subject>INDOOR AIR POLLUTION</subject><subject>Indoor pollution and occupational exposure</subject><subject>NATURAL GAS</subject><subject>OXIDATION</subject><subject>PARTICLE SIZE</subject><subject>POLLUTION</subject><subject>PROCESSING</subject><subject>SIZE</subject><subject>SOLS</subject><subject>STOVES</subject><subject>THERMOCHEMICAL PROCESSES</subject><issn>0160-4120</issn><issn>1873-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVpoNtN_0EOppTQHJxI1oetSyAs-YLAHpKchTweJWq9VqrxBtpfH7u75NgehoHhmRneh7EjwU8FF-ZsKl4qUfHvVp5YLo0u1x_YQjS1LE2t-Ue2eEc-sc9EPzjnlWr0gtn7-AeLLtKYY7sdYxqoSKGgbbuJkNMGR8yFx5wo9VSEaVJASj_j8HTIDoLvCb_s-5I9Xl0-rG7Ku_X17erirgTVNGMJABZC2_HWC1ubDkPQvpOoQoVat4BCW1S80spY2UGHHhuDbZC2wdZ6LZfs6-5uojE6gjgiPEMaBoTRGW5tY2foeAe95PRrizS6TSTAvvcDpi05YZQQXPP_g0pOZup6AtUOnCwQZQzuJceNz7-d4G627malblbqrHR_rbv1tPZtf98T-D5kP0Ck911lqqZWcsLOdxhO5l4j5jkYDoBdzHOuLsV__3kDf6OWyg</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Li, Chih-Shan</creator><creator>Lin, Wen-Hai</creator><creator>Jenq, Fu-Tien</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7T2</scope><scope>7TV</scope><scope>7U2</scope><scope>OTOTI</scope></search><sort><creationdate>1993</creationdate><title>Size distributions of submicrometer aerosols from cooking</title><author>Li, Chih-Shan ; Lin, Wen-Hai ; Jenq, Fu-Tien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-ccc9cfbd0ba1976deff5ad3e4f2e55bce159e40254693dcdeae86ebf398eb9a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>03 NATURAL GAS</topic><topic>030700 - Natural Gas- Waste Management</topic><topic>540120 - Environment, Atmospheric- Chemicals Monitoring &amp; Transport- (1990-)</topic><topic>AEROSOLS</topic><topic>AIR POLLUTION</topic><topic>APPLIANCES</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>BURNERS</topic><topic>CHEMICAL REACTIONS</topic><topic>COLLOIDS</topic><topic>COMBUSTION</topic><topic>DISPERSIONS</topic><topic>ENERGY SOURCES</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>FLUIDS</topic><topic>FOOD PROCESSING</topic><topic>FOSSIL FUELS</topic><topic>FUEL GAS</topic><topic>FUELS</topic><topic>GAS BURNERS</topic><topic>GAS FUELS</topic><topic>GASES</topic><topic>INDOOR AIR POLLUTION</topic><topic>Indoor pollution and occupational exposure</topic><topic>NATURAL GAS</topic><topic>OXIDATION</topic><topic>PARTICLE SIZE</topic><topic>POLLUTION</topic><topic>PROCESSING</topic><topic>SIZE</topic><topic>SOLS</topic><topic>STOVES</topic><topic>THERMOCHEMICAL PROCESSES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chih-Shan</creatorcontrib><creatorcontrib>Lin, Wen-Hai</creatorcontrib><creatorcontrib>Jenq, Fu-Tien</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Pollution Abstracts</collection><collection>Safety Science and Risk</collection><collection>OSTI.GOV</collection><jtitle>Environment international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chih-Shan</au><au>Lin, Wen-Hai</au><au>Jenq, Fu-Tien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size distributions of submicrometer aerosols from cooking</atitle><jtitle>Environment international</jtitle><date>1993</date><risdate>1993</risdate><volume>19</volume><issue>2</issue><spage>147</spage><epage>154</epage><pages>147-154</pages><issn>0160-4120</issn><eissn>1873-6750</eissn><coden>ENVIDV</coden><abstract>Although gas stove usage varies from country to country, it is still one of the major indoor combustion sources. In order to assess the health effects of using gas stoves, the physical characteristics of the particle emissions from cooking were conducted in a first-floor apartment in the Taipei area. The particle size distributions from scrambling eggs, frying chicken, and cooking soup were measured in the kitchen by a high resolution particle sizer, which could measure the particles in the size range of 0.01 μm to 1 μm. The concentrations of the submicrometer particles increased significantly from 15 000 cm −3 to 150 000 cm −3 during cooking. Additionally, the ultrafine particles constituted 60%–70% of the total submicron aerosols. The changes in the size distributions and the concentrations of the submicrometer aerosols before, during, and after the aerosol generations were compared. On the average, the median diameters of scrambling eggs, frying chicken, cooking soup, and of the background conditions were 40 nm, 50 nm, 30 nm, and 70 nm, respectively. Regarding the surface area-weighted size distributions, the surface median diameters of the four situations were 180 nm, 300 nm, 150 nm, and 220 nm, respectively. Furthermore, the volume median diameters in the conditions mentioned above were almost similar, namely 300–350 nm.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/0160-4120(93)90365-O</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0160-4120
ispartof Environment international, 1993, Vol.19 (2), p.147-154
issn 0160-4120
1873-6750
language eng
recordid cdi_osti_scitechconnect_6099895
source Elsevier ScienceDirect Journals Complete
subjects 03 NATURAL GAS
030700 - Natural Gas- Waste Management
540120 - Environment, Atmospheric- Chemicals Monitoring & Transport- (1990-)
AEROSOLS
AIR POLLUTION
APPLIANCES
Applied sciences
Atmospheric pollution
BURNERS
CHEMICAL REACTIONS
COLLOIDS
COMBUSTION
DISPERSIONS
ENERGY SOURCES
ENVIRONMENTAL SCIENCES
Exact sciences and technology
FLUIDS
FOOD PROCESSING
FOSSIL FUELS
FUEL GAS
FUELS
GAS BURNERS
GAS FUELS
GASES
INDOOR AIR POLLUTION
Indoor pollution and occupational exposure
NATURAL GAS
OXIDATION
PARTICLE SIZE
POLLUTION
PROCESSING
SIZE
SOLS
STOVES
THERMOCHEMICAL PROCESSES
title Size distributions of submicrometer aerosols from cooking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20distributions%20of%20submicrometer%20aerosols%20from%20cooking&rft.jtitle=Environment%20international&rft.au=Li,%20Chih-Shan&rft.date=1993&rft.volume=19&rft.issue=2&rft.spage=147&rft.epage=154&rft.pages=147-154&rft.issn=0160-4120&rft.eissn=1873-6750&rft.coden=ENVIDV&rft_id=info:doi/10.1016/0160-4120(93)90365-O&rft_dat=%3Cproquest_osti_%3E16411050%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14302477&rft_id=info:pmid/&rft_els_id=016041209390365O&rfr_iscdi=true