Size distributions of submicrometer aerosols from cooking
Although gas stove usage varies from country to country, it is still one of the major indoor combustion sources. In order to assess the health effects of using gas stoves, the physical characteristics of the particle emissions from cooking were conducted in a first-floor apartment in the Taipei area...
Gespeichert in:
Veröffentlicht in: | Environment international 1993, Vol.19 (2), p.147-154 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 2 |
container_start_page | 147 |
container_title | Environment international |
container_volume | 19 |
creator | Li, Chih-Shan Lin, Wen-Hai Jenq, Fu-Tien |
description | Although gas stove usage varies from country to country, it is still one of the major indoor combustion sources. In order to assess the health effects of using gas stoves, the physical characteristics of the particle emissions from cooking were conducted in a first-floor apartment in the Taipei area. The particle size distributions from scrambling eggs, frying chicken, and cooking soup were measured in the kitchen by a high resolution particle sizer, which could measure the particles in the size range of 0.01 μm to 1 μm. The concentrations of the submicrometer particles increased significantly from 15 000 cm
−3 to 150 000 cm
−3 during cooking. Additionally, the ultrafine particles constituted 60%–70% of the total submicron aerosols. The changes in the size distributions and the concentrations of the submicrometer aerosols before, during, and after the aerosol generations were compared. On the average, the median diameters of scrambling eggs, frying chicken, cooking soup, and of the background conditions were 40 nm, 50 nm, 30 nm, and 70 nm, respectively. Regarding the surface area-weighted size distributions, the surface median diameters of the four situations were 180 nm, 300 nm, 150 nm, and 220 nm, respectively. Furthermore, the volume median diameters in the conditions mentioned above were almost similar, namely 300–350 nm. |
doi_str_mv | 10.1016/0160-4120(93)90365-O |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6099895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016041209390365O</els_id><sourcerecordid>16411050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-ccc9cfbd0ba1976deff5ad3e4f2e55bce159e40254693dcdeae86ebf398eb9a53</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVpoNtN_0EOppTQHJxI1oetSyAs-YLAHpKchTweJWq9VqrxBtpfH7u75NgehoHhmRneh7EjwU8FF-ZsKl4qUfHvVp5YLo0u1x_YQjS1LE2t-Ue2eEc-sc9EPzjnlWr0gtn7-AeLLtKYY7sdYxqoSKGgbbuJkNMGR8yFx5wo9VSEaVJASj_j8HTIDoLvCb_s-5I9Xl0-rG7Ku_X17erirgTVNGMJABZC2_HWC1ubDkPQvpOoQoVat4BCW1S80spY2UGHHhuDbZC2wdZ6LZfs6-5uojE6gjgiPEMaBoTRGW5tY2foeAe95PRrizS6TSTAvvcDpi05YZQQXPP_g0pOZup6AtUOnCwQZQzuJceNz7-d4G627malblbqrHR_rbv1tPZtf98T-D5kP0Ck911lqqZWcsLOdxhO5l4j5jkYDoBdzHOuLsV__3kDf6OWyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14302477</pqid></control><display><type>article</type><title>Size distributions of submicrometer aerosols from cooking</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Chih-Shan ; Lin, Wen-Hai ; Jenq, Fu-Tien</creator><creatorcontrib>Li, Chih-Shan ; Lin, Wen-Hai ; Jenq, Fu-Tien</creatorcontrib><description>Although gas stove usage varies from country to country, it is still one of the major indoor combustion sources. In order to assess the health effects of using gas stoves, the physical characteristics of the particle emissions from cooking were conducted in a first-floor apartment in the Taipei area. The particle size distributions from scrambling eggs, frying chicken, and cooking soup were measured in the kitchen by a high resolution particle sizer, which could measure the particles in the size range of 0.01 μm to 1 μm. The concentrations of the submicrometer particles increased significantly from 15 000 cm
−3 to 150 000 cm
−3 during cooking. Additionally, the ultrafine particles constituted 60%–70% of the total submicron aerosols. The changes in the size distributions and the concentrations of the submicrometer aerosols before, during, and after the aerosol generations were compared. On the average, the median diameters of scrambling eggs, frying chicken, cooking soup, and of the background conditions were 40 nm, 50 nm, 30 nm, and 70 nm, respectively. Regarding the surface area-weighted size distributions, the surface median diameters of the four situations were 180 nm, 300 nm, 150 nm, and 220 nm, respectively. Furthermore, the volume median diameters in the conditions mentioned above were almost similar, namely 300–350 nm.</description><identifier>ISSN: 0160-4120</identifier><identifier>EISSN: 1873-6750</identifier><identifier>DOI: 10.1016/0160-4120(93)90365-O</identifier><identifier>CODEN: ENVIDV</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>03 NATURAL GAS ; 030700 - Natural Gas- Waste Management ; 540120 - Environment, Atmospheric- Chemicals Monitoring & Transport- (1990-) ; AEROSOLS ; AIR POLLUTION ; APPLIANCES ; Applied sciences ; Atmospheric pollution ; BURNERS ; CHEMICAL REACTIONS ; COLLOIDS ; COMBUSTION ; DISPERSIONS ; ENERGY SOURCES ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; FLUIDS ; FOOD PROCESSING ; FOSSIL FUELS ; FUEL GAS ; FUELS ; GAS BURNERS ; GAS FUELS ; GASES ; INDOOR AIR POLLUTION ; Indoor pollution and occupational exposure ; NATURAL GAS ; OXIDATION ; PARTICLE SIZE ; POLLUTION ; PROCESSING ; SIZE ; SOLS ; STOVES ; THERMOCHEMICAL PROCESSES</subject><ispartof>Environment international, 1993, Vol.19 (2), p.147-154</ispartof><rights>1993</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-ccc9cfbd0ba1976deff5ad3e4f2e55bce159e40254693dcdeae86ebf398eb9a53</citedby><cites>FETCH-LOGICAL-c488t-ccc9cfbd0ba1976deff5ad3e4f2e55bce159e40254693dcdeae86ebf398eb9a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/016041209390365O$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4628743$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6099895$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chih-Shan</creatorcontrib><creatorcontrib>Lin, Wen-Hai</creatorcontrib><creatorcontrib>Jenq, Fu-Tien</creatorcontrib><title>Size distributions of submicrometer aerosols from cooking</title><title>Environment international</title><description>Although gas stove usage varies from country to country, it is still one of the major indoor combustion sources. In order to assess the health effects of using gas stoves, the physical characteristics of the particle emissions from cooking were conducted in a first-floor apartment in the Taipei area. The particle size distributions from scrambling eggs, frying chicken, and cooking soup were measured in the kitchen by a high resolution particle sizer, which could measure the particles in the size range of 0.01 μm to 1 μm. The concentrations of the submicrometer particles increased significantly from 15 000 cm
−3 to 150 000 cm
−3 during cooking. Additionally, the ultrafine particles constituted 60%–70% of the total submicron aerosols. The changes in the size distributions and the concentrations of the submicrometer aerosols before, during, and after the aerosol generations were compared. On the average, the median diameters of scrambling eggs, frying chicken, cooking soup, and of the background conditions were 40 nm, 50 nm, 30 nm, and 70 nm, respectively. Regarding the surface area-weighted size distributions, the surface median diameters of the four situations were 180 nm, 300 nm, 150 nm, and 220 nm, respectively. Furthermore, the volume median diameters in the conditions mentioned above were almost similar, namely 300–350 nm.</description><subject>03 NATURAL GAS</subject><subject>030700 - Natural Gas- Waste Management</subject><subject>540120 - Environment, Atmospheric- Chemicals Monitoring & Transport- (1990-)</subject><subject>AEROSOLS</subject><subject>AIR POLLUTION</subject><subject>APPLIANCES</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>BURNERS</subject><subject>CHEMICAL REACTIONS</subject><subject>COLLOIDS</subject><subject>COMBUSTION</subject><subject>DISPERSIONS</subject><subject>ENERGY SOURCES</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>FLUIDS</subject><subject>FOOD PROCESSING</subject><subject>FOSSIL FUELS</subject><subject>FUEL GAS</subject><subject>FUELS</subject><subject>GAS BURNERS</subject><subject>GAS FUELS</subject><subject>GASES</subject><subject>INDOOR AIR POLLUTION</subject><subject>Indoor pollution and occupational exposure</subject><subject>NATURAL GAS</subject><subject>OXIDATION</subject><subject>PARTICLE SIZE</subject><subject>POLLUTION</subject><subject>PROCESSING</subject><subject>SIZE</subject><subject>SOLS</subject><subject>STOVES</subject><subject>THERMOCHEMICAL PROCESSES</subject><issn>0160-4120</issn><issn>1873-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVpoNtN_0EOppTQHJxI1oetSyAs-YLAHpKchTweJWq9VqrxBtpfH7u75NgehoHhmRneh7EjwU8FF-ZsKl4qUfHvVp5YLo0u1x_YQjS1LE2t-Ue2eEc-sc9EPzjnlWr0gtn7-AeLLtKYY7sdYxqoSKGgbbuJkNMGR8yFx5wo9VSEaVJASj_j8HTIDoLvCb_s-5I9Xl0-rG7Ku_X17erirgTVNGMJABZC2_HWC1ubDkPQvpOoQoVat4BCW1S80spY2UGHHhuDbZC2wdZ6LZfs6-5uojE6gjgiPEMaBoTRGW5tY2foeAe95PRrizS6TSTAvvcDpi05YZQQXPP_g0pOZup6AtUOnCwQZQzuJceNz7-d4G627malblbqrHR_rbv1tPZtf98T-D5kP0Ck911lqqZWcsLOdxhO5l4j5jkYDoBdzHOuLsV__3kDf6OWyg</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Li, Chih-Shan</creator><creator>Lin, Wen-Hai</creator><creator>Jenq, Fu-Tien</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7T2</scope><scope>7TV</scope><scope>7U2</scope><scope>OTOTI</scope></search><sort><creationdate>1993</creationdate><title>Size distributions of submicrometer aerosols from cooking</title><author>Li, Chih-Shan ; Lin, Wen-Hai ; Jenq, Fu-Tien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-ccc9cfbd0ba1976deff5ad3e4f2e55bce159e40254693dcdeae86ebf398eb9a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>03 NATURAL GAS</topic><topic>030700 - Natural Gas- Waste Management</topic><topic>540120 - Environment, Atmospheric- Chemicals Monitoring & Transport- (1990-)</topic><topic>AEROSOLS</topic><topic>AIR POLLUTION</topic><topic>APPLIANCES</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>BURNERS</topic><topic>CHEMICAL REACTIONS</topic><topic>COLLOIDS</topic><topic>COMBUSTION</topic><topic>DISPERSIONS</topic><topic>ENERGY SOURCES</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>FLUIDS</topic><topic>FOOD PROCESSING</topic><topic>FOSSIL FUELS</topic><topic>FUEL GAS</topic><topic>FUELS</topic><topic>GAS BURNERS</topic><topic>GAS FUELS</topic><topic>GASES</topic><topic>INDOOR AIR POLLUTION</topic><topic>Indoor pollution and occupational exposure</topic><topic>NATURAL GAS</topic><topic>OXIDATION</topic><topic>PARTICLE SIZE</topic><topic>POLLUTION</topic><topic>PROCESSING</topic><topic>SIZE</topic><topic>SOLS</topic><topic>STOVES</topic><topic>THERMOCHEMICAL PROCESSES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chih-Shan</creatorcontrib><creatorcontrib>Lin, Wen-Hai</creatorcontrib><creatorcontrib>Jenq, Fu-Tien</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Pollution Abstracts</collection><collection>Safety Science and Risk</collection><collection>OSTI.GOV</collection><jtitle>Environment international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chih-Shan</au><au>Lin, Wen-Hai</au><au>Jenq, Fu-Tien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size distributions of submicrometer aerosols from cooking</atitle><jtitle>Environment international</jtitle><date>1993</date><risdate>1993</risdate><volume>19</volume><issue>2</issue><spage>147</spage><epage>154</epage><pages>147-154</pages><issn>0160-4120</issn><eissn>1873-6750</eissn><coden>ENVIDV</coden><abstract>Although gas stove usage varies from country to country, it is still one of the major indoor combustion sources. In order to assess the health effects of using gas stoves, the physical characteristics of the particle emissions from cooking were conducted in a first-floor apartment in the Taipei area. The particle size distributions from scrambling eggs, frying chicken, and cooking soup were measured in the kitchen by a high resolution particle sizer, which could measure the particles in the size range of 0.01 μm to 1 μm. The concentrations of the submicrometer particles increased significantly from 15 000 cm
−3 to 150 000 cm
−3 during cooking. Additionally, the ultrafine particles constituted 60%–70% of the total submicron aerosols. The changes in the size distributions and the concentrations of the submicrometer aerosols before, during, and after the aerosol generations were compared. On the average, the median diameters of scrambling eggs, frying chicken, cooking soup, and of the background conditions were 40 nm, 50 nm, 30 nm, and 70 nm, respectively. Regarding the surface area-weighted size distributions, the surface median diameters of the four situations were 180 nm, 300 nm, 150 nm, and 220 nm, respectively. Furthermore, the volume median diameters in the conditions mentioned above were almost similar, namely 300–350 nm.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/0160-4120(93)90365-O</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0160-4120 |
ispartof | Environment international, 1993, Vol.19 (2), p.147-154 |
issn | 0160-4120 1873-6750 |
language | eng |
recordid | cdi_osti_scitechconnect_6099895 |
source | Elsevier ScienceDirect Journals Complete |
subjects | 03 NATURAL GAS 030700 - Natural Gas- Waste Management 540120 - Environment, Atmospheric- Chemicals Monitoring & Transport- (1990-) AEROSOLS AIR POLLUTION APPLIANCES Applied sciences Atmospheric pollution BURNERS CHEMICAL REACTIONS COLLOIDS COMBUSTION DISPERSIONS ENERGY SOURCES ENVIRONMENTAL SCIENCES Exact sciences and technology FLUIDS FOOD PROCESSING FOSSIL FUELS FUEL GAS FUELS GAS BURNERS GAS FUELS GASES INDOOR AIR POLLUTION Indoor pollution and occupational exposure NATURAL GAS OXIDATION PARTICLE SIZE POLLUTION PROCESSING SIZE SOLS STOVES THERMOCHEMICAL PROCESSES |
title | Size distributions of submicrometer aerosols from cooking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20distributions%20of%20submicrometer%20aerosols%20from%20cooking&rft.jtitle=Environment%20international&rft.au=Li,%20Chih-Shan&rft.date=1993&rft.volume=19&rft.issue=2&rft.spage=147&rft.epage=154&rft.pages=147-154&rft.issn=0160-4120&rft.eissn=1873-6750&rft.coden=ENVIDV&rft_id=info:doi/10.1016/0160-4120(93)90365-O&rft_dat=%3Cproquest_osti_%3E16411050%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14302477&rft_id=info:pmid/&rft_els_id=016041209390365O&rfr_iscdi=true |