Cohesive properties of crystalline solids by the generalized gradient approximation

The cohesive properties of Al, C, and Si are calculated using the generalized gradient approximation (GGA) of Perdew and co-workers. Results of numerical tests of atomic total energies and ionization energies are also presented. Cohesive energies calculated with the GGA agree much better with experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter Condensed matter, 1990-11, Vol.42 (15), p.9357-9364
Hauptverfasser: KONG, X. J, CHAN, C. T, HO, K. M, YE, Y. Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9364
container_issue 15
container_start_page 9357
container_title Physical review. B, Condensed matter
container_volume 42
creator KONG, X. J
CHAN, C. T
HO, K. M
YE, Y. Y
description The cohesive properties of Al, C, and Si are calculated using the generalized gradient approximation (GGA) of Perdew and co-workers. Results of numerical tests of atomic total energies and ionization energies are also presented. Cohesive energies calculated with the GGA agree much better with experimental values than results calculated with the local-density approximation, which usually overbinds. The improvement is mainly due to the better error-cancellation property of GGA.
doi_str_mv 10.1103/PhysRevB.42.9357
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6039623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859272128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-cf1193d4ae632fb6247803ce53f97782028fbe45ae2774fe89196ef37cabd41f3</originalsourceid><addsrcrecordid>eNpFkM1rGzEQxUVoSZ0091wKolDIZV19rlbH1vQLAi1pcxZa7ShWWK9cjRzq_PXdYKedyxze7z1mHiGXnC05Z_L9j_Ueb-Dh41KJpZXanJAFZ1Y30lj9giwYb2XDO2FfkTPEezaPaO0pObXWam7Ugvxc5TVgegC6LXkLpSZAmiMNZY_Vj2OagGIe04C039O6BnoHExQ_pkcY6F3xQ4KpUr-d7X_SxteUp9fkZfQjwsVxn5Pbz59-rb4219-_fFt9uG6CtLo2IXJu5aA8tFLEvhXKdEwG0DJaYzrBRBd7UNqDMEZF6Cy3LURpgu8HxaM8J28PuRlrchhShbAOeZogVNcyaVshZ-jqAM0H_t4BVrdJGGAc_QR5h4532gojuOhmlB3QUDJigei2ZX6p7B1n7qlu91y3U8I91T1b3hzTd_0Ghn-GY7-z_u6oewx-jMVPIeH_XKuktm0n_wKn7oqj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859272128</pqid></control><display><type>article</type><title>Cohesive properties of crystalline solids by the generalized gradient approximation</title><source>American Physical Society Journals</source><creator>KONG, X. J ; CHAN, C. T ; HO, K. M ; YE, Y. Y</creator><creatorcontrib>KONG, X. J ; CHAN, C. T ; HO, K. M ; YE, Y. Y</creatorcontrib><description>The cohesive properties of Al, C, and Si are calculated using the generalized gradient approximation (GGA) of Perdew and co-workers. Results of numerical tests of atomic total energies and ionization energies are also presented. Cohesive energies calculated with the GGA agree much better with experimental values than results calculated with the local-density approximation, which usually overbinds. The improvement is mainly due to the better error-cancellation property of GGA.</description><identifier>ISSN: 0163-1829</identifier><identifier>EISSN: 1095-3795</identifier><identifier>DOI: 10.1103/PhysRevB.42.9357</identifier><identifier>PMID: 9995174</identifier><identifier>CODEN: PRBMDO</identifier><language>eng</language><publisher>Woodbury, NY: American Physical Society</publisher><subject>360104 - Metals &amp; Alloys- Physical Properties ; 656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-) ; ALUMINIUM ; Applied sciences ; BINDING ENERGY ; CARBON ; CHARGE DENSITY ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Condensed matter: structure, mechanical and thermal properties ; CORRELATIONS ; Crystal binding; cohesive energy ; Crystalline state (including molecular motions in solids) ; CRYSTALS ; ELECTRON CORRELATION ; ELECTRONIC STRUCTURE ; ELEMENTS ; ENERGY ; ENERGY LEVELS ; Exact sciences and technology ; EXCHANGE INTERACTIONS ; GROUND STATES ; INTERACTIONS ; IONIZATION ; MATERIALS SCIENCE ; METALS ; Metals. Metallurgy ; NONMETALS ; Physics ; SEMIMETALS ; SILICON ; Structure of solids and liquids; crystallography</subject><ispartof>Physical review. B, Condensed matter, 1990-11, Vol.42 (15), p.9357-9364</ispartof><rights>1991 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-cf1193d4ae632fb6247803ce53f97782028fbe45ae2774fe89196ef37cabd41f3</citedby><cites>FETCH-LOGICAL-c395t-cf1193d4ae632fb6247803ce53f97782028fbe45ae2774fe89196ef37cabd41f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19435968$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9995174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6039623$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>KONG, X. J</creatorcontrib><creatorcontrib>CHAN, C. T</creatorcontrib><creatorcontrib>HO, K. M</creatorcontrib><creatorcontrib>YE, Y. Y</creatorcontrib><title>Cohesive properties of crystalline solids by the generalized gradient approximation</title><title>Physical review. B, Condensed matter</title><addtitle>Phys Rev B Condens Matter</addtitle><description>The cohesive properties of Al, C, and Si are calculated using the generalized gradient approximation (GGA) of Perdew and co-workers. Results of numerical tests of atomic total energies and ionization energies are also presented. Cohesive energies calculated with the GGA agree much better with experimental values than results calculated with the local-density approximation, which usually overbinds. The improvement is mainly due to the better error-cancellation property of GGA.</description><subject>360104 - Metals &amp; Alloys- Physical Properties</subject><subject>656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-)</subject><subject>ALUMINIUM</subject><subject>Applied sciences</subject><subject>BINDING ENERGY</subject><subject>CARBON</subject><subject>CHARGE DENSITY</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>CORRELATIONS</subject><subject>Crystal binding; cohesive energy</subject><subject>Crystalline state (including molecular motions in solids)</subject><subject>CRYSTALS</subject><subject>ELECTRON CORRELATION</subject><subject>ELECTRONIC STRUCTURE</subject><subject>ELEMENTS</subject><subject>ENERGY</subject><subject>ENERGY LEVELS</subject><subject>Exact sciences and technology</subject><subject>EXCHANGE INTERACTIONS</subject><subject>GROUND STATES</subject><subject>INTERACTIONS</subject><subject>IONIZATION</subject><subject>MATERIALS SCIENCE</subject><subject>METALS</subject><subject>Metals. Metallurgy</subject><subject>NONMETALS</subject><subject>Physics</subject><subject>SEMIMETALS</subject><subject>SILICON</subject><subject>Structure of solids and liquids; crystallography</subject><issn>0163-1829</issn><issn>1095-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNpFkM1rGzEQxUVoSZ0091wKolDIZV19rlbH1vQLAi1pcxZa7ShWWK9cjRzq_PXdYKedyxze7z1mHiGXnC05Z_L9j_Ueb-Dh41KJpZXanJAFZ1Y30lj9giwYb2XDO2FfkTPEezaPaO0pObXWam7Ugvxc5TVgegC6LXkLpSZAmiMNZY_Vj2OagGIe04C039O6BnoHExQ_pkcY6F3xQ4KpUr-d7X_SxteUp9fkZfQjwsVxn5Pbz59-rb4219-_fFt9uG6CtLo2IXJu5aA8tFLEvhXKdEwG0DJaYzrBRBd7UNqDMEZF6Cy3LURpgu8HxaM8J28PuRlrchhShbAOeZogVNcyaVshZ-jqAM0H_t4BVrdJGGAc_QR5h4532gojuOhmlB3QUDJigei2ZX6p7B1n7qlu91y3U8I91T1b3hzTd_0Ghn-GY7-z_u6oewx-jMVPIeH_XKuktm0n_wKn7oqj</recordid><startdate>19901115</startdate><enddate>19901115</enddate><creator>KONG, X. J</creator><creator>CHAN, C. T</creator><creator>HO, K. M</creator><creator>YE, Y. Y</creator><general>American Physical Society</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19901115</creationdate><title>Cohesive properties of crystalline solids by the generalized gradient approximation</title><author>KONG, X. J ; CHAN, C. T ; HO, K. M ; YE, Y. Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-cf1193d4ae632fb6247803ce53f97782028fbe45ae2774fe89196ef37cabd41f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>360104 - Metals &amp; Alloys- Physical Properties</topic><topic>656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-)</topic><topic>ALUMINIUM</topic><topic>Applied sciences</topic><topic>BINDING ENERGY</topic><topic>CARBON</topic><topic>CHARGE DENSITY</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>CORRELATIONS</topic><topic>Crystal binding; cohesive energy</topic><topic>Crystalline state (including molecular motions in solids)</topic><topic>CRYSTALS</topic><topic>ELECTRON CORRELATION</topic><topic>ELECTRONIC STRUCTURE</topic><topic>ELEMENTS</topic><topic>ENERGY</topic><topic>ENERGY LEVELS</topic><topic>Exact sciences and technology</topic><topic>EXCHANGE INTERACTIONS</topic><topic>GROUND STATES</topic><topic>INTERACTIONS</topic><topic>IONIZATION</topic><topic>MATERIALS SCIENCE</topic><topic>METALS</topic><topic>Metals. Metallurgy</topic><topic>NONMETALS</topic><topic>Physics</topic><topic>SEMIMETALS</topic><topic>SILICON</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>online_resources</toplevel><creatorcontrib>KONG, X. J</creatorcontrib><creatorcontrib>CHAN, C. T</creatorcontrib><creatorcontrib>HO, K. M</creatorcontrib><creatorcontrib>YE, Y. Y</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KONG, X. J</au><au>CHAN, C. T</au><au>HO, K. M</au><au>YE, Y. Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cohesive properties of crystalline solids by the generalized gradient approximation</atitle><jtitle>Physical review. B, Condensed matter</jtitle><addtitle>Phys Rev B Condens Matter</addtitle><date>1990-11-15</date><risdate>1990</risdate><volume>42</volume><issue>15</issue><spage>9357</spage><epage>9364</epage><pages>9357-9364</pages><issn>0163-1829</issn><eissn>1095-3795</eissn><coden>PRBMDO</coden><abstract>The cohesive properties of Al, C, and Si are calculated using the generalized gradient approximation (GGA) of Perdew and co-workers. Results of numerical tests of atomic total energies and ionization energies are also presented. Cohesive energies calculated with the GGA agree much better with experimental values than results calculated with the local-density approximation, which usually overbinds. The improvement is mainly due to the better error-cancellation property of GGA.</abstract><cop>Woodbury, NY</cop><pub>American Physical Society</pub><pmid>9995174</pmid><doi>10.1103/PhysRevB.42.9357</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0163-1829
ispartof Physical review. B, Condensed matter, 1990-11, Vol.42 (15), p.9357-9364
issn 0163-1829
1095-3795
language eng
recordid cdi_osti_scitechconnect_6039623
source American Physical Society Journals
subjects 360104 - Metals & Alloys- Physical Properties
656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-)
ALUMINIUM
Applied sciences
BINDING ENERGY
CARBON
CHARGE DENSITY
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Condensed matter: structure, mechanical and thermal properties
CORRELATIONS
Crystal binding
cohesive energy
Crystalline state (including molecular motions in solids)
CRYSTALS
ELECTRON CORRELATION
ELECTRONIC STRUCTURE
ELEMENTS
ENERGY
ENERGY LEVELS
Exact sciences and technology
EXCHANGE INTERACTIONS
GROUND STATES
INTERACTIONS
IONIZATION
MATERIALS SCIENCE
METALS
Metals. Metallurgy
NONMETALS
Physics
SEMIMETALS
SILICON
Structure of solids and liquids
crystallography
title Cohesive properties of crystalline solids by the generalized gradient approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cohesive%20properties%20of%20crystalline%20solids%20by%20the%20generalized%20gradient%20approximation&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter&rft.au=KONG,%20X.%20J&rft.date=1990-11-15&rft.volume=42&rft.issue=15&rft.spage=9357&rft.epage=9364&rft.pages=9357-9364&rft.issn=0163-1829&rft.eissn=1095-3795&rft.coden=PRBMDO&rft_id=info:doi/10.1103/PhysRevB.42.9357&rft_dat=%3Cproquest_osti_%3E1859272128%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859272128&rft_id=info:pmid/9995174&rfr_iscdi=true