Scale symmetry of quantum solitons

The nonlinear {sigma} model Lagrangian for a rotating and vibrating quantum soliton expressed in terms of collective coordinates is shown to possess a symmetry under scale transformation of the chiral field. By utilizing this symmetry, an integro-differential equation determining the chiral angle is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles and fields Particles and fields, 1991-11, Vol.44 (10), p.3249-3253
Hauptverfasser: CHEPILKO, N. M, FUJII, K, KOBUSHKIN, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3253
container_issue 10
container_start_page 3249
container_title Physical review. D, Particles and fields
container_volume 44
creator CHEPILKO, N. M
FUJII, K
KOBUSHKIN, P
description The nonlinear {sigma} model Lagrangian for a rotating and vibrating quantum soliton expressed in terms of collective coordinates is shown to possess a symmetry under scale transformation of the chiral field. By utilizing this symmetry, an integro-differential equation determining the chiral angle is obtained. A consistency condition between this equation and the Schroedinger equation for the quantum soliton is discussed, and a relation between the total soliton energy and that related to rotation and vibration is obtained without solving the Schroedinger equation. In the limiting case of only a vibrating or a rotating soliton, the integro-differential equation is reduced to a differential one, and the chiral angle becomes independent of eigensolutions of the relevant Schroedinger equation. The effects of chiral-symmetry breaking due to the pion mass are also examined.
doi_str_mv 10.1103/PhysRevD.44.3249
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6035964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859232601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-e021a2914cf98ddcee0972c78303744107def7b9fc219b1252b6600c62dd90783</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRbK3uXUkRF25S7zwyySylPqGg-FgPk8mERpJMmzsR8u9NSRXv5my-c-B-hJxTWFAK_OZ13eOb-75bCLHgTKgDMqWQqkgomh6SKcSxjFjK6IScIH7BcEzyYzKhAJQnKUzJ5bs1lZtjX9cutP3cF_NtZ5rQ1XP0VRl8g6fkqDAVurN9zsjnw_3H8ilavTw-L29XkeUxD5EDRg1TVNhCpXlunQOVMJukHHgiBIUkd0WSqcIyqjLKYpZJCWAly3MFAzYjl-Oux1BqtGVwdm190zgbtAQeKykG6HqENq3fdg6Drku0rqpM43yHmqaxYpzJ4b8ZgRG1rUdsXaE3bVmbttcU9E6f_tWnhdA7fUPlYr_eZbXL_xVGXwNwtQcMDuKK1jS2xD9OcJAqVfwHIW12zg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859232601</pqid></control><display><type>article</type><title>Scale symmetry of quantum solitons</title><source>American Physical Society Journals</source><creator>CHEPILKO, N. M ; FUJII, K ; KOBUSHKIN, P</creator><creatorcontrib>CHEPILKO, N. M ; FUJII, K ; KOBUSHKIN, P</creatorcontrib><description>The nonlinear {sigma} model Lagrangian for a rotating and vibrating quantum soliton expressed in terms of collective coordinates is shown to possess a symmetry under scale transformation of the chiral field. By utilizing this symmetry, an integro-differential equation determining the chiral angle is obtained. A consistency condition between this equation and the Schroedinger equation for the quantum soliton is discussed, and a relation between the total soliton energy and that related to rotation and vibration is obtained without solving the Schroedinger equation. In the limiting case of only a vibrating or a rotating soliton, the integro-differential equation is reduced to a differential one, and the chiral angle becomes independent of eigensolutions of the relevant Schroedinger equation. The effects of chiral-symmetry breaking due to the pion mass are also examined.</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.44.3249</identifier><identifier>PMID: 10013780</identifier><identifier>CODEN: PRVDAQ</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>661100 - Classical &amp; Quantum Mechanics- (1992-) ; 662120 - General Theory of Particles &amp; Fields- Symmetry, Conservation Laws, Currents &amp; Their Properties- (1992-) ; BOSON-EXCHANGE MODELS ; BOSONS ; CHIRAL SYMMETRY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical and quantum physics: mechanics and fields ; DIFFERENTIAL EQUATIONS ; ELEMENTARY PARTICLES ; ENERGY LEVELS ; EQUATIONS ; Exact sciences and technology ; EXCITED STATES ; FUNCTIONS ; HADRONS ; HAMILTONIANS ; LAGRANGIAN FUNCTION ; MATHEMATICAL MODELS ; MATHEMATICAL OPERATORS ; MATHEMATICAL SPACE ; MESONS ; MINKOWSKI SPACE ; NONLINEAR PROBLEMS ; NUCLEON-NUCLEON POTENTIAL ; PARTIAL DIFFERENTIAL EQUATIONS ; PARTICLE MODELS ; PERIPHERAL MODELS ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; PIONS ; POTENTIALS ; PSEUDOSCALAR MESONS ; QUANTIZATION ; QUANTUM OPERATORS ; QUASI PARTICLES ; ROTATIONAL STATES ; SCHROEDINGER EQUATION ; SIGMA MODEL ; SKYRME POTENTIAL ; SOLITONS ; SPACE ; SYMMETRY ; SYMMETRY BREAKING ; VIBRATIONAL STATES ; WAVE EQUATIONS</subject><ispartof>Physical review. D, Particles and fields, 1991-11, Vol.44 (10), p.3249-3253</ispartof><rights>1993 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-e021a2914cf98ddcee0972c78303744107def7b9fc219b1252b6600c62dd90783</citedby><cites>FETCH-LOGICAL-c353t-e021a2914cf98ddcee0972c78303744107def7b9fc219b1252b6600c62dd90783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4306989$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10013780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6035964$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>CHEPILKO, N. M</creatorcontrib><creatorcontrib>FUJII, K</creatorcontrib><creatorcontrib>KOBUSHKIN, P</creatorcontrib><title>Scale symmetry of quantum solitons</title><title>Physical review. D, Particles and fields</title><addtitle>Phys Rev D Part Fields</addtitle><description>The nonlinear {sigma} model Lagrangian for a rotating and vibrating quantum soliton expressed in terms of collective coordinates is shown to possess a symmetry under scale transformation of the chiral field. By utilizing this symmetry, an integro-differential equation determining the chiral angle is obtained. A consistency condition between this equation and the Schroedinger equation for the quantum soliton is discussed, and a relation between the total soliton energy and that related to rotation and vibration is obtained without solving the Schroedinger equation. In the limiting case of only a vibrating or a rotating soliton, the integro-differential equation is reduced to a differential one, and the chiral angle becomes independent of eigensolutions of the relevant Schroedinger equation. The effects of chiral-symmetry breaking due to the pion mass are also examined.</description><subject>661100 - Classical &amp; Quantum Mechanics- (1992-)</subject><subject>662120 - General Theory of Particles &amp; Fields- Symmetry, Conservation Laws, Currents &amp; Their Properties- (1992-)</subject><subject>BOSON-EXCHANGE MODELS</subject><subject>BOSONS</subject><subject>CHIRAL SYMMETRY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>ENERGY LEVELS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>EXCITED STATES</subject><subject>FUNCTIONS</subject><subject>HADRONS</subject><subject>HAMILTONIANS</subject><subject>LAGRANGIAN FUNCTION</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MATHEMATICAL SPACE</subject><subject>MESONS</subject><subject>MINKOWSKI SPACE</subject><subject>NONLINEAR PROBLEMS</subject><subject>NUCLEON-NUCLEON POTENTIAL</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PARTICLE MODELS</subject><subject>PERIPHERAL MODELS</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>PIONS</subject><subject>POTENTIALS</subject><subject>PSEUDOSCALAR MESONS</subject><subject>QUANTIZATION</subject><subject>QUANTUM OPERATORS</subject><subject>QUASI PARTICLES</subject><subject>ROTATIONAL STATES</subject><subject>SCHROEDINGER EQUATION</subject><subject>SIGMA MODEL</subject><subject>SKYRME POTENTIAL</subject><subject>SOLITONS</subject><subject>SPACE</subject><subject>SYMMETRY</subject><subject>SYMMETRY BREAKING</subject><subject>VIBRATIONAL STATES</subject><subject>WAVE EQUATIONS</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw0AUhQdRbK3uXUkRF25S7zwyySylPqGg-FgPk8mERpJMmzsR8u9NSRXv5my-c-B-hJxTWFAK_OZ13eOb-75bCLHgTKgDMqWQqkgomh6SKcSxjFjK6IScIH7BcEzyYzKhAJQnKUzJ5bs1lZtjX9cutP3cF_NtZ5rQ1XP0VRl8g6fkqDAVurN9zsjnw_3H8ilavTw-L29XkeUxD5EDRg1TVNhCpXlunQOVMJukHHgiBIUkd0WSqcIyqjLKYpZJCWAly3MFAzYjl-Oux1BqtGVwdm190zgbtAQeKykG6HqENq3fdg6Drku0rqpM43yHmqaxYpzJ4b8ZgRG1rUdsXaE3bVmbttcU9E6f_tWnhdA7fUPlYr_eZbXL_xVGXwNwtQcMDuKK1jS2xD9OcJAqVfwHIW12zg</recordid><startdate>19911115</startdate><enddate>19911115</enddate><creator>CHEPILKO, N. M</creator><creator>FUJII, K</creator><creator>KOBUSHKIN, P</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19911115</creationdate><title>Scale symmetry of quantum solitons</title><author>CHEPILKO, N. M ; FUJII, K ; KOBUSHKIN, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-e021a2914cf98ddcee0972c78303744107def7b9fc219b1252b6600c62dd90783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>661100 - Classical &amp; Quantum Mechanics- (1992-)</topic><topic>662120 - General Theory of Particles &amp; Fields- Symmetry, Conservation Laws, Currents &amp; Their Properties- (1992-)</topic><topic>BOSON-EXCHANGE MODELS</topic><topic>BOSONS</topic><topic>CHIRAL SYMMETRY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>ENERGY LEVELS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>EXCITED STATES</topic><topic>FUNCTIONS</topic><topic>HADRONS</topic><topic>HAMILTONIANS</topic><topic>LAGRANGIAN FUNCTION</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MATHEMATICAL SPACE</topic><topic>MESONS</topic><topic>MINKOWSKI SPACE</topic><topic>NONLINEAR PROBLEMS</topic><topic>NUCLEON-NUCLEON POTENTIAL</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PARTICLE MODELS</topic><topic>PERIPHERAL MODELS</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>PIONS</topic><topic>POTENTIALS</topic><topic>PSEUDOSCALAR MESONS</topic><topic>QUANTIZATION</topic><topic>QUANTUM OPERATORS</topic><topic>QUASI PARTICLES</topic><topic>ROTATIONAL STATES</topic><topic>SCHROEDINGER EQUATION</topic><topic>SIGMA MODEL</topic><topic>SKYRME POTENTIAL</topic><topic>SOLITONS</topic><topic>SPACE</topic><topic>SYMMETRY</topic><topic>SYMMETRY BREAKING</topic><topic>VIBRATIONAL STATES</topic><topic>WAVE EQUATIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEPILKO, N. M</creatorcontrib><creatorcontrib>FUJII, K</creatorcontrib><creatorcontrib>KOBUSHKIN, P</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHEPILKO, N. M</au><au>FUJII, K</au><au>KOBUSHKIN, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scale symmetry of quantum solitons</atitle><jtitle>Physical review. D, Particles and fields</jtitle><addtitle>Phys Rev D Part Fields</addtitle><date>1991-11-15</date><risdate>1991</risdate><volume>44</volume><issue>10</issue><spage>3249</spage><epage>3253</epage><pages>3249-3253</pages><issn>0556-2821</issn><eissn>1089-4918</eissn><coden>PRVDAQ</coden><abstract>The nonlinear {sigma} model Lagrangian for a rotating and vibrating quantum soliton expressed in terms of collective coordinates is shown to possess a symmetry under scale transformation of the chiral field. By utilizing this symmetry, an integro-differential equation determining the chiral angle is obtained. A consistency condition between this equation and the Schroedinger equation for the quantum soliton is discussed, and a relation between the total soliton energy and that related to rotation and vibration is obtained without solving the Schroedinger equation. In the limiting case of only a vibrating or a rotating soliton, the integro-differential equation is reduced to a differential one, and the chiral angle becomes independent of eigensolutions of the relevant Schroedinger equation. The effects of chiral-symmetry breaking due to the pion mass are also examined.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>10013780</pmid><doi>10.1103/PhysRevD.44.3249</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0556-2821
ispartof Physical review. D, Particles and fields, 1991-11, Vol.44 (10), p.3249-3253
issn 0556-2821
1089-4918
language eng
recordid cdi_osti_scitechconnect_6035964
source American Physical Society Journals
subjects 661100 - Classical & Quantum Mechanics- (1992-)
662120 - General Theory of Particles & Fields- Symmetry, Conservation Laws, Currents & Their Properties- (1992-)
BOSON-EXCHANGE MODELS
BOSONS
CHIRAL SYMMETRY
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Classical and quantum physics: mechanics and fields
DIFFERENTIAL EQUATIONS
ELEMENTARY PARTICLES
ENERGY LEVELS
EQUATIONS
Exact sciences and technology
EXCITED STATES
FUNCTIONS
HADRONS
HAMILTONIANS
LAGRANGIAN FUNCTION
MATHEMATICAL MODELS
MATHEMATICAL OPERATORS
MATHEMATICAL SPACE
MESONS
MINKOWSKI SPACE
NONLINEAR PROBLEMS
NUCLEON-NUCLEON POTENTIAL
PARTIAL DIFFERENTIAL EQUATIONS
PARTICLE MODELS
PERIPHERAL MODELS
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
PIONS
POTENTIALS
PSEUDOSCALAR MESONS
QUANTIZATION
QUANTUM OPERATORS
QUASI PARTICLES
ROTATIONAL STATES
SCHROEDINGER EQUATION
SIGMA MODEL
SKYRME POTENTIAL
SOLITONS
SPACE
SYMMETRY
SYMMETRY BREAKING
VIBRATIONAL STATES
WAVE EQUATIONS
title Scale symmetry of quantum solitons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scale%20symmetry%20of%20quantum%20solitons&rft.jtitle=Physical%20review.%20D,%20Particles%20and%20fields&rft.au=CHEPILKO,%20N.%20M&rft.date=1991-11-15&rft.volume=44&rft.issue=10&rft.spage=3249&rft.epage=3253&rft.pages=3249-3253&rft.issn=0556-2821&rft.eissn=1089-4918&rft.coden=PRVDAQ&rft_id=info:doi/10.1103/PhysRevD.44.3249&rft_dat=%3Cproquest_osti_%3E1859232601%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859232601&rft_id=info:pmid/10013780&rfr_iscdi=true