The Rhodium-Molybdenum Interaction in Rh/Mo/Alumina

Rhodium and molybdenum form mixed metal particles when supported on alumina. Results of chemisorption, IR, and SIMS measurements indicate that the composition of the surface of these particles is sensitive to the environment in which the measurements are made. Molybdenum appears concentrated in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of catalysis 1993-06, Vol.141 (2), p.478-485
Hauptverfasser: Storm, D.A., Mertens, F.P., Cataldo, M.C., Decanio, E.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 485
container_issue 2
container_start_page 478
container_title Journal of catalysis
container_volume 141
creator Storm, D.A.
Mertens, F.P.
Cataldo, M.C.
Decanio, E.C.
description Rhodium and molybdenum form mixed metal particles when supported on alumina. Results of chemisorption, IR, and SIMS measurements indicate that the composition of the surface of these particles is sensitive to the environment in which the measurements are made. Molybdenum appears concentrated in the surface when the atmosphere is nonreducing, while rhodium appears concentrated in the surface when hydrogen is adsorbed. Chemisorption and infrared results indicate that molybdenum reduces the surface available for the chemisorption of carbon monoxide and hydrogen. The band for the linear carbonyl is shifted 8-11 cm−1 higher when molybdenum is present, which may indicate oxidation of the rhodium by the molybdenum or increased dipolar interactions between carbon monoxide molecules adsorbed on the smaller surface. Chemisorption and infrared results also suggest that adsorbed hydrogen increases electronic density at the rhodium sites. Bands for both the gem dicarbonyl and the linear carbonyl are shifted 7-10cm−1 lower in either Rh/alumina or Rh/Mo/alumina when hydrogen is adsorbed.
doi_str_mv 10.1006/jcat.1993.1156
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5990185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951783711565</els_id><sourcerecordid>S0021951783711565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-9a5a1dac31dc8d95c17ba15672d1a5d345231f33ec6a75f0bb7f326eef0a83773</originalsourceid><addsrcrecordid>eNp1kD1rwzAQhkVpoWnatXMoXe3oLMuyxhD6EUgolHQWsiQTBVsKklLIv6-NS7dOtzzvvXcPQo-Ac8C4Wh6VTDlwTnIAWl2hGWCOs6Li5TWaYVxAximwW3QX4xHjgaH1DJH9wSw-D17bc5_tfHdptHHnfrFxyQSpkvVuYd1ALHd-uerOvXXyHt20sovm4XfO0dfry379nm0_3jbr1TZTpCxSxiWVoKUioFWtOVXAGjlcxgoNkmpS0oJAS4hRlWS0xU3DWlJUxrRY1oQxMkdP014fkxVR2WTUQXnnjEqCco6hpgOUT5AKPsZgWnEKtpfhIgCL0YsYvYjRixi9DIHnKXCSUcmuDdIpG_9SJas5g3LA6gkzw4ff1oTxAOOU0TaM_drb_xp-AAljdPU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Rhodium-Molybdenum Interaction in Rh/Mo/Alumina</title><source>Elsevier ScienceDirect Journals</source><creator>Storm, D.A. ; Mertens, F.P. ; Cataldo, M.C. ; Decanio, E.C.</creator><creatorcontrib>Storm, D.A. ; Mertens, F.P. ; Cataldo, M.C. ; Decanio, E.C.</creatorcontrib><description>Rhodium and molybdenum form mixed metal particles when supported on alumina. Results of chemisorption, IR, and SIMS measurements indicate that the composition of the surface of these particles is sensitive to the environment in which the measurements are made. Molybdenum appears concentrated in the surface when the atmosphere is nonreducing, while rhodium appears concentrated in the surface when hydrogen is adsorbed. Chemisorption and infrared results indicate that molybdenum reduces the surface available for the chemisorption of carbon monoxide and hydrogen. The band for the linear carbonyl is shifted 8-11 cm−1 higher when molybdenum is present, which may indicate oxidation of the rhodium by the molybdenum or increased dipolar interactions between carbon monoxide molecules adsorbed on the smaller surface. Chemisorption and infrared results also suggest that adsorbed hydrogen increases electronic density at the rhodium sites. Bands for both the gem dicarbonyl and the linear carbonyl are shifted 7-10cm−1 lower in either Rh/alumina or Rh/Mo/alumina when hydrogen is adsorbed.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1006/jcat.1993.1156</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>400201 - Chemical &amp; Physicochemical Properties ; ABSORPTION SPECTROSCOPY ; ALUMINIUM COMPOUNDS ; ALUMINIUM OXIDES ; CARBON COMPOUNDS ; CARBON MONOXIDE ; CARBON OXIDES ; Catalysis ; CATALYST SUPPORTS ; Catalysts: preparations and properties ; CHALCOGENIDES ; CHEMICAL ANALYSIS ; CHEMICAL REACTIONS ; CHEMISORPTION ; Chemistry ; ELEMENTS ; Exact sciences and technology ; General and physical chemistry ; HYDROGEN ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; ION MICROPROBE ANALYSIS ; MASS SPECTROSCOPY ; METALS ; MICROANALYSIS ; MOLYBDENUM ; NONDESTRUCTIVE ANALYSIS ; NONMETALS ; OXIDATION ; OXIDES ; OXYGEN COMPOUNDS ; PARTICLES ; PLATINUM METALS ; RHODIUM ; SEPARATION PROCESSES ; SORPTION ; SPECTROSCOPY ; STRUCTURAL CHEMICAL ANALYSIS ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; TRANSITION ELEMENTS</subject><ispartof>Journal of catalysis, 1993-06, Vol.141 (2), p.478-485</ispartof><rights>1993 Academic Press</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-9a5a1dac31dc8d95c17ba15672d1a5d345231f33ec6a75f0bb7f326eef0a83773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021951783711565$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4789714$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5990185$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Storm, D.A.</creatorcontrib><creatorcontrib>Mertens, F.P.</creatorcontrib><creatorcontrib>Cataldo, M.C.</creatorcontrib><creatorcontrib>Decanio, E.C.</creatorcontrib><title>The Rhodium-Molybdenum Interaction in Rh/Mo/Alumina</title><title>Journal of catalysis</title><description>Rhodium and molybdenum form mixed metal particles when supported on alumina. Results of chemisorption, IR, and SIMS measurements indicate that the composition of the surface of these particles is sensitive to the environment in which the measurements are made. Molybdenum appears concentrated in the surface when the atmosphere is nonreducing, while rhodium appears concentrated in the surface when hydrogen is adsorbed. Chemisorption and infrared results indicate that molybdenum reduces the surface available for the chemisorption of carbon monoxide and hydrogen. The band for the linear carbonyl is shifted 8-11 cm−1 higher when molybdenum is present, which may indicate oxidation of the rhodium by the molybdenum or increased dipolar interactions between carbon monoxide molecules adsorbed on the smaller surface. Chemisorption and infrared results also suggest that adsorbed hydrogen increases electronic density at the rhodium sites. Bands for both the gem dicarbonyl and the linear carbonyl are shifted 7-10cm−1 lower in either Rh/alumina or Rh/Mo/alumina when hydrogen is adsorbed.</description><subject>400201 - Chemical &amp; Physicochemical Properties</subject><subject>ABSORPTION SPECTROSCOPY</subject><subject>ALUMINIUM COMPOUNDS</subject><subject>ALUMINIUM OXIDES</subject><subject>CARBON COMPOUNDS</subject><subject>CARBON MONOXIDE</subject><subject>CARBON OXIDES</subject><subject>Catalysis</subject><subject>CATALYST SUPPORTS</subject><subject>Catalysts: preparations and properties</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL ANALYSIS</subject><subject>CHEMICAL REACTIONS</subject><subject>CHEMISORPTION</subject><subject>Chemistry</subject><subject>ELEMENTS</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>HYDROGEN</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>ION MICROPROBE ANALYSIS</subject><subject>MASS SPECTROSCOPY</subject><subject>METALS</subject><subject>MICROANALYSIS</subject><subject>MOLYBDENUM</subject><subject>NONDESTRUCTIVE ANALYSIS</subject><subject>NONMETALS</subject><subject>OXIDATION</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PARTICLES</subject><subject>PLATINUM METALS</subject><subject>RHODIUM</subject><subject>SEPARATION PROCESSES</subject><subject>SORPTION</subject><subject>SPECTROSCOPY</subject><subject>STRUCTURAL CHEMICAL ANALYSIS</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>TRANSITION ELEMENTS</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kD1rwzAQhkVpoWnatXMoXe3oLMuyxhD6EUgolHQWsiQTBVsKklLIv6-NS7dOtzzvvXcPQo-Ac8C4Wh6VTDlwTnIAWl2hGWCOs6Li5TWaYVxAximwW3QX4xHjgaH1DJH9wSw-D17bc5_tfHdptHHnfrFxyQSpkvVuYd1ALHd-uerOvXXyHt20sovm4XfO0dfry379nm0_3jbr1TZTpCxSxiWVoKUioFWtOVXAGjlcxgoNkmpS0oJAS4hRlWS0xU3DWlJUxrRY1oQxMkdP014fkxVR2WTUQXnnjEqCco6hpgOUT5AKPsZgWnEKtpfhIgCL0YsYvYjRixi9DIHnKXCSUcmuDdIpG_9SJas5g3LA6gkzw4ff1oTxAOOU0TaM_drb_xp-AAljdPU</recordid><startdate>19930601</startdate><enddate>19930601</enddate><creator>Storm, D.A.</creator><creator>Mertens, F.P.</creator><creator>Cataldo, M.C.</creator><creator>Decanio, E.C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19930601</creationdate><title>The Rhodium-Molybdenum Interaction in Rh/Mo/Alumina</title><author>Storm, D.A. ; Mertens, F.P. ; Cataldo, M.C. ; Decanio, E.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-9a5a1dac31dc8d95c17ba15672d1a5d345231f33ec6a75f0bb7f326eef0a83773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>400201 - Chemical &amp; Physicochemical Properties</topic><topic>ABSORPTION SPECTROSCOPY</topic><topic>ALUMINIUM COMPOUNDS</topic><topic>ALUMINIUM OXIDES</topic><topic>CARBON COMPOUNDS</topic><topic>CARBON MONOXIDE</topic><topic>CARBON OXIDES</topic><topic>Catalysis</topic><topic>CATALYST SUPPORTS</topic><topic>Catalysts: preparations and properties</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL ANALYSIS</topic><topic>CHEMICAL REACTIONS</topic><topic>CHEMISORPTION</topic><topic>Chemistry</topic><topic>ELEMENTS</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>HYDROGEN</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>ION MICROPROBE ANALYSIS</topic><topic>MASS SPECTROSCOPY</topic><topic>METALS</topic><topic>MICROANALYSIS</topic><topic>MOLYBDENUM</topic><topic>NONDESTRUCTIVE ANALYSIS</topic><topic>NONMETALS</topic><topic>OXIDATION</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PARTICLES</topic><topic>PLATINUM METALS</topic><topic>RHODIUM</topic><topic>SEPARATION PROCESSES</topic><topic>SORPTION</topic><topic>SPECTROSCOPY</topic><topic>STRUCTURAL CHEMICAL ANALYSIS</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>TRANSITION ELEMENTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Storm, D.A.</creatorcontrib><creatorcontrib>Mertens, F.P.</creatorcontrib><creatorcontrib>Cataldo, M.C.</creatorcontrib><creatorcontrib>Decanio, E.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Storm, D.A.</au><au>Mertens, F.P.</au><au>Cataldo, M.C.</au><au>Decanio, E.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Rhodium-Molybdenum Interaction in Rh/Mo/Alumina</atitle><jtitle>Journal of catalysis</jtitle><date>1993-06-01</date><risdate>1993</risdate><volume>141</volume><issue>2</issue><spage>478</spage><epage>485</epage><pages>478-485</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>Rhodium and molybdenum form mixed metal particles when supported on alumina. Results of chemisorption, IR, and SIMS measurements indicate that the composition of the surface of these particles is sensitive to the environment in which the measurements are made. Molybdenum appears concentrated in the surface when the atmosphere is nonreducing, while rhodium appears concentrated in the surface when hydrogen is adsorbed. Chemisorption and infrared results indicate that molybdenum reduces the surface available for the chemisorption of carbon monoxide and hydrogen. The band for the linear carbonyl is shifted 8-11 cm−1 higher when molybdenum is present, which may indicate oxidation of the rhodium by the molybdenum or increased dipolar interactions between carbon monoxide molecules adsorbed on the smaller surface. Chemisorption and infrared results also suggest that adsorbed hydrogen increases electronic density at the rhodium sites. Bands for both the gem dicarbonyl and the linear carbonyl are shifted 7-10cm−1 lower in either Rh/alumina or Rh/Mo/alumina when hydrogen is adsorbed.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1006/jcat.1993.1156</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 1993-06, Vol.141 (2), p.478-485
issn 0021-9517
1090-2694
language eng
recordid cdi_osti_scitechconnect_5990185
source Elsevier ScienceDirect Journals
subjects 400201 - Chemical & Physicochemical Properties
ABSORPTION SPECTROSCOPY
ALUMINIUM COMPOUNDS
ALUMINIUM OXIDES
CARBON COMPOUNDS
CARBON MONOXIDE
CARBON OXIDES
Catalysis
CATALYST SUPPORTS
Catalysts: preparations and properties
CHALCOGENIDES
CHEMICAL ANALYSIS
CHEMICAL REACTIONS
CHEMISORPTION
Chemistry
ELEMENTS
Exact sciences and technology
General and physical chemistry
HYDROGEN
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
ION MICROPROBE ANALYSIS
MASS SPECTROSCOPY
METALS
MICROANALYSIS
MOLYBDENUM
NONDESTRUCTIVE ANALYSIS
NONMETALS
OXIDATION
OXIDES
OXYGEN COMPOUNDS
PARTICLES
PLATINUM METALS
RHODIUM
SEPARATION PROCESSES
SORPTION
SPECTROSCOPY
STRUCTURAL CHEMICAL ANALYSIS
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
TRANSITION ELEMENTS
title The Rhodium-Molybdenum Interaction in Rh/Mo/Alumina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Rhodium-Molybdenum%20Interaction%20in%20Rh/Mo/Alumina&rft.jtitle=Journal%20of%20catalysis&rft.au=Storm,%20D.A.&rft.date=1993-06-01&rft.volume=141&rft.issue=2&rft.spage=478&rft.epage=485&rft.pages=478-485&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1006/jcat.1993.1156&rft_dat=%3Celsevier_osti_%3ES0021951783711565%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021951783711565&rfr_iscdi=true