Acceleration and filtering in the generalized Landweber iteration using a variable shaping matrix

The generalized Landweber iteration with a variable shaping matrix is used to solve the large linear system of equations arising in the image reconstruction problem of emission tomography. The method is based on the property that once a spatial frequency image component is almost recovered within in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 1993-06, Vol.12 (2), p.278-286
Hauptverfasser: Pan, T.-S., Yagle, A.E., Clinthorne, N.H., Rogers, W.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue 2
container_start_page 278
container_title IEEE transactions on medical imaging
container_volume 12
creator Pan, T.-S.
Yagle, A.E.
Clinthorne, N.H.
Rogers, W.L.
description The generalized Landweber iteration with a variable shaping matrix is used to solve the large linear system of equations arising in the image reconstruction problem of emission tomography. The method is based on the property that once a spatial frequency image component is almost recovered within in in the generalized Landweber iteration, this component will still stay within in during subsequent iterations with a different shaping matrix, as long as this shaping matrix satisfies the convergence criterion for the component. Two different shaping matrices are used: the first recovers low-frequency image components; and the second may be used either to accelerate the reconstruction of high-frequency image components, or to attenuate these components to filter the image. The variable shaping matrix gives results similar to truncated inverse filtering, but requires much less computation and memory, since it does not rely on the singular value decomposition.< >
doi_str_mv 10.1109/42.232256
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_5953432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>232256</ieee_id><sourcerecordid>734246259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-e7593a0d0244bb539f0a69bf61cee6095e4168c350b24eaa7da775d70a7efd503</originalsourceid><addsrcrecordid>eNqF0UFvFCEUB3BiNHZdPXj1YIgxNh6mAgMMHJtGrckmXjTxNnnDvOliZpkV2Gr99LLOtN7siYT34_HPe4Q85-yMc2bfSXEmaiGUfkBWXClTCSW_PSQrJhpTMabFCXmS0nfGuFTMPiYn3AhuJFcrAufO4YgRsp8ChdDTwY8Zow9X1Aeat0ivMJT66H9jTzdF_MQOI_X59tEhHTHQa4geuhFp2sL-eLWDHP2vp-TRAGPCZ8u5Jl8_vP9ycVltPn_8dHG-qVwJlStslK2B9UxI2XWqtgMDbbtBc4eomVUouTauVqwTEgGaHppG9Q2DBodesXpNXs19p5R9m1wJ6LZuCgFdbpVVtaxFQacz2sfpxwFTbnc-lQGMEHA6pLappZBalChr8ua_UhhueYl5P1RW68ayeyHX2kitVIFvZ-jilFLEod1Hv4N403LWHhfeStHOCy_25dL00O2w_yeXDRfwegGQHIxDhOB8unPSGMP-9nkxM4-Id9Xlkz9OWbmi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16684655</pqid></control><display><type>article</type><title>Acceleration and filtering in the generalized Landweber iteration using a variable shaping matrix</title><source>IEEE Electronic Library (IEL)</source><creator>Pan, T.-S. ; Yagle, A.E. ; Clinthorne, N.H. ; Rogers, W.L.</creator><creatorcontrib>Pan, T.-S. ; Yagle, A.E. ; Clinthorne, N.H. ; Rogers, W.L.</creatorcontrib><description>The generalized Landweber iteration with a variable shaping matrix is used to solve the large linear system of equations arising in the image reconstruction problem of emission tomography. The method is based on the property that once a spatial frequency image component is almost recovered within in in the generalized Landweber iteration, this component will still stay within in during subsequent iterations with a different shaping matrix, as long as this shaping matrix satisfies the convergence criterion for the component. Two different shaping matrices are used: the first recovers low-frequency image components; and the second may be used either to accelerate the reconstruction of high-frequency image components, or to attenuate these components to filter the image. The variable shaping matrix gives results similar to truncated inverse filtering, but requires much less computation and memory, since it does not rely on the singular value decomposition.&lt; &gt;</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/42.232256</identifier><identifier>PMID: 18218415</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>550601 - Medicine- Unsealed Radionuclides in Diagnostics ; Acceleration ; ACCURACY ; ATTENUATION ; Biological and medical sciences ; COMPUTERIZED TOMOGRAPHY ; Convergence ; DIAGNOSTIC TECHNIQUES ; EQUATIONS ; Filtering ; Filters ; Frequency ; IMAGE PROCESSING ; Image reconstruction ; Investigative techniques, diagnostic techniques (general aspects) ; Linear systems ; Matrix decomposition ; Medical sciences ; Miscellaneous. Technology ; PROCESSING ; RADIOLOGY AND NUCLEAR MEDICINE ; Radionuclide investigations ; RESOLUTION ; SPATIAL RESOLUTION ; TOMOGRAPHY</subject><ispartof>IEEE transactions on medical imaging, 1993-06, Vol.12 (2), p.278-286</ispartof><rights>1993 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-e7593a0d0244bb539f0a69bf61cee6095e4168c350b24eaa7da775d70a7efd503</citedby><cites>FETCH-LOGICAL-c450t-e7593a0d0244bb539f0a69bf61cee6095e4168c350b24eaa7da775d70a7efd503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/232256$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/232256$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4888056$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18218415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5953432$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, T.-S.</creatorcontrib><creatorcontrib>Yagle, A.E.</creatorcontrib><creatorcontrib>Clinthorne, N.H.</creatorcontrib><creatorcontrib>Rogers, W.L.</creatorcontrib><title>Acceleration and filtering in the generalized Landweber iteration using a variable shaping matrix</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>The generalized Landweber iteration with a variable shaping matrix is used to solve the large linear system of equations arising in the image reconstruction problem of emission tomography. The method is based on the property that once a spatial frequency image component is almost recovered within in in the generalized Landweber iteration, this component will still stay within in during subsequent iterations with a different shaping matrix, as long as this shaping matrix satisfies the convergence criterion for the component. Two different shaping matrices are used: the first recovers low-frequency image components; and the second may be used either to accelerate the reconstruction of high-frequency image components, or to attenuate these components to filter the image. The variable shaping matrix gives results similar to truncated inverse filtering, but requires much less computation and memory, since it does not rely on the singular value decomposition.&lt; &gt;</description><subject>550601 - Medicine- Unsealed Radionuclides in Diagnostics</subject><subject>Acceleration</subject><subject>ACCURACY</subject><subject>ATTENUATION</subject><subject>Biological and medical sciences</subject><subject>COMPUTERIZED TOMOGRAPHY</subject><subject>Convergence</subject><subject>DIAGNOSTIC TECHNIQUES</subject><subject>EQUATIONS</subject><subject>Filtering</subject><subject>Filters</subject><subject>Frequency</subject><subject>IMAGE PROCESSING</subject><subject>Image reconstruction</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Linear systems</subject><subject>Matrix decomposition</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>PROCESSING</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radionuclide investigations</subject><subject>RESOLUTION</subject><subject>SPATIAL RESOLUTION</subject><subject>TOMOGRAPHY</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqF0UFvFCEUB3BiNHZdPXj1YIgxNh6mAgMMHJtGrckmXjTxNnnDvOliZpkV2Gr99LLOtN7siYT34_HPe4Q85-yMc2bfSXEmaiGUfkBWXClTCSW_PSQrJhpTMabFCXmS0nfGuFTMPiYn3AhuJFcrAufO4YgRsp8ChdDTwY8Zow9X1Aeat0ivMJT66H9jTzdF_MQOI_X59tEhHTHQa4geuhFp2sL-eLWDHP2vp-TRAGPCZ8u5Jl8_vP9ycVltPn_8dHG-qVwJlStslK2B9UxI2XWqtgMDbbtBc4eomVUouTauVqwTEgGaHppG9Q2DBodesXpNXs19p5R9m1wJ6LZuCgFdbpVVtaxFQacz2sfpxwFTbnc-lQGMEHA6pLappZBalChr8ua_UhhueYl5P1RW68ayeyHX2kitVIFvZ-jilFLEod1Hv4N403LWHhfeStHOCy_25dL00O2w_yeXDRfwegGQHIxDhOB8unPSGMP-9nkxM4-Id9Xlkz9OWbmi</recordid><startdate>19930601</startdate><enddate>19930601</enddate><creator>Pan, T.-S.</creator><creator>Yagle, A.E.</creator><creator>Clinthorne, N.H.</creator><creator>Rogers, W.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19930601</creationdate><title>Acceleration and filtering in the generalized Landweber iteration using a variable shaping matrix</title><author>Pan, T.-S. ; Yagle, A.E. ; Clinthorne, N.H. ; Rogers, W.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-e7593a0d0244bb539f0a69bf61cee6095e4168c350b24eaa7da775d70a7efd503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>550601 - Medicine- Unsealed Radionuclides in Diagnostics</topic><topic>Acceleration</topic><topic>ACCURACY</topic><topic>ATTENUATION</topic><topic>Biological and medical sciences</topic><topic>COMPUTERIZED TOMOGRAPHY</topic><topic>Convergence</topic><topic>DIAGNOSTIC TECHNIQUES</topic><topic>EQUATIONS</topic><topic>Filtering</topic><topic>Filters</topic><topic>Frequency</topic><topic>IMAGE PROCESSING</topic><topic>Image reconstruction</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Linear systems</topic><topic>Matrix decomposition</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>PROCESSING</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radionuclide investigations</topic><topic>RESOLUTION</topic><topic>SPATIAL RESOLUTION</topic><topic>TOMOGRAPHY</topic><toplevel>online_resources</toplevel><creatorcontrib>Pan, T.-S.</creatorcontrib><creatorcontrib>Yagle, A.E.</creatorcontrib><creatorcontrib>Clinthorne, N.H.</creatorcontrib><creatorcontrib>Rogers, W.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, T.-S.</au><au>Yagle, A.E.</au><au>Clinthorne, N.H.</au><au>Rogers, W.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceleration and filtering in the generalized Landweber iteration using a variable shaping matrix</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>1993-06-01</date><risdate>1993</risdate><volume>12</volume><issue>2</issue><spage>278</spage><epage>286</epage><pages>278-286</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>The generalized Landweber iteration with a variable shaping matrix is used to solve the large linear system of equations arising in the image reconstruction problem of emission tomography. The method is based on the property that once a spatial frequency image component is almost recovered within in in the generalized Landweber iteration, this component will still stay within in during subsequent iterations with a different shaping matrix, as long as this shaping matrix satisfies the convergence criterion for the component. Two different shaping matrices are used: the first recovers low-frequency image components; and the second may be used either to accelerate the reconstruction of high-frequency image components, or to attenuate these components to filter the image. The variable shaping matrix gives results similar to truncated inverse filtering, but requires much less computation and memory, since it does not rely on the singular value decomposition.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18218415</pmid><doi>10.1109/42.232256</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 1993-06, Vol.12 (2), p.278-286
issn 0278-0062
1558-254X
language eng
recordid cdi_osti_scitechconnect_5953432
source IEEE Electronic Library (IEL)
subjects 550601 - Medicine- Unsealed Radionuclides in Diagnostics
Acceleration
ACCURACY
ATTENUATION
Biological and medical sciences
COMPUTERIZED TOMOGRAPHY
Convergence
DIAGNOSTIC TECHNIQUES
EQUATIONS
Filtering
Filters
Frequency
IMAGE PROCESSING
Image reconstruction
Investigative techniques, diagnostic techniques (general aspects)
Linear systems
Matrix decomposition
Medical sciences
Miscellaneous. Technology
PROCESSING
RADIOLOGY AND NUCLEAR MEDICINE
Radionuclide investigations
RESOLUTION
SPATIAL RESOLUTION
TOMOGRAPHY
title Acceleration and filtering in the generalized Landweber iteration using a variable shaping matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceleration%20and%20filtering%20in%20the%20generalized%20Landweber%20iteration%20using%20a%20variable%20shaping%20matrix&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Pan,%20T.-S.&rft.date=1993-06-01&rft.volume=12&rft.issue=2&rft.spage=278&rft.epage=286&rft.pages=278-286&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/42.232256&rft_dat=%3Cproquest_RIE%3E734246259%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16684655&rft_id=info:pmid/18218415&rft_ieee_id=232256&rfr_iscdi=true