Application of Computational Fluid Dynamics to Regional Dosimetry of Inhaled Chemicals in the Upper Respiratory Tract of the Rat

For certain inhaled air pollutants, such as reactive, water soluble gases, the distribution of nasal lesions observed in F344 rats may be closely related to regional gas uptake patterns in the nose. These uptake patterns can be influenced by the currents of air flowing through the upper respiratory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology and applied pharmacology 1993-08, Vol.121 (2), p.253-263
Hauptverfasser: Kimbell, J.S., Gross, E.A., Joyner, D.R., Godo, M.N., Morgan, K.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue 2
container_start_page 253
container_title Toxicology and applied pharmacology
container_volume 121
creator Kimbell, J.S.
Gross, E.A.
Joyner, D.R.
Godo, M.N.
Morgan, K.T.
description For certain inhaled air pollutants, such as reactive, water soluble gases, the distribution of nasal lesions observed in F344 rats may be closely related to regional gas uptake patterns in the nose. These uptake patterns can be influenced by the currents of air flowing through the upper respiratory tract during the breathing cycle. Since data on respiratory tract lesions in F344 rats are extrapolated to humans to make predictions of risk to human health, a better understanding of the factors affecting these responses is needed. To assess potential effects of nasal airflow on lesion location and severity, a methodology was developed for creation of computer simulations of steady-state airflow and gas transport using a three-dimensional finite element grid reconstructed from serial step-sections of the nasal passages of a male F344 rat. Simulations on a supercomputer used the computational fluid dynamics package FIDAP (FDI, Evanston, IL). Distinct streams of bulk flow evident in the simulations matched inspiratory streams reported for the F344 rat. Moreover, simulated regional flow velocities matched measured velocities in concurrent laboratory experiments with a hollow nasal mold. Computer-predicted flows were used in simulations of gas transport to nasal passage walls, with formaldehyde as a test case. Results from the uptake simulations were compared with the reported distribution of formaldehyde-induced nasal lesions observed in the F344 rat, and indicated that airflow-driven uptake patterns probably play an important role in determining the location of certain nasal lesions induced by formaldehyde. This work demonstrated the feasibility of applying computational fluid dynamics to airflow-driven dosimetry of inhaled chemicals in the upper respiratory tract.
doi_str_mv 10.1006/taap.1993.1152
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5952454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041008X8371152X</els_id><sourcerecordid>16764099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-8dc107aaf83e097d631079afe7aff0d74eb75cedaa46abeabdd7cf39b0f1b1283</originalsourceid><addsrcrecordid>eNp1kc2LFDEQxYMo6-zo1ZsQRLz1mHSnP3JcZt11YUFYdsFbqE4qTqS70yZpYW7-6aadYW-eQvF-r8irR8g7znacseZzAph3XMpqx3ldviAbzmRTsKqqXpINY4IXjHXfX5PLGH8yxqQQ_IJcdJVoalFuyJ-reR6chuT8RL2lez_OS_o3wkBvhsUZen2cYHQ60uTpA_44Sdc-uhFTOK6uu-kAAxq6P2AGYYjUTTQdkD7NM4ZsirMLkHymHwPotHpW-QHSG_LKZgO-Pb9b8nTz5XH_tbj_dnu3v7ovtJBlKjqjOWsBbFchk61pqjxKsNiCtcy0Avu21mgARAM9Qm9Mq20le2Z5z8uu2pIPp70-Jqeidgn1QftpQp1ULetS1CJDn07QHPyvBWNSo4sahwEm9EtUvGkbwfKxt2R3AnXwMQa0ag5uhHBUnKm1F7X2otZe1NpLNrw_b176Ec0zfi4i6x_POsR8QBtg0i4-Y6JruWQsY90Jw3yq3w7DmgSnHNyFNYjx7n8_-AvKFatp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16764099</pqid></control><display><type>article</type><title>Application of Computational Fluid Dynamics to Regional Dosimetry of Inhaled Chemicals in the Upper Respiratory Tract of the Rat</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Kimbell, J.S. ; Gross, E.A. ; Joyner, D.R. ; Godo, M.N. ; Morgan, K.T.</creator><creatorcontrib>Kimbell, J.S. ; Gross, E.A. ; Joyner, D.R. ; Godo, M.N. ; Morgan, K.T.</creatorcontrib><description>For certain inhaled air pollutants, such as reactive, water soluble gases, the distribution of nasal lesions observed in F344 rats may be closely related to regional gas uptake patterns in the nose. These uptake patterns can be influenced by the currents of air flowing through the upper respiratory tract during the breathing cycle. Since data on respiratory tract lesions in F344 rats are extrapolated to humans to make predictions of risk to human health, a better understanding of the factors affecting these responses is needed. To assess potential effects of nasal airflow on lesion location and severity, a methodology was developed for creation of computer simulations of steady-state airflow and gas transport using a three-dimensional finite element grid reconstructed from serial step-sections of the nasal passages of a male F344 rat. Simulations on a supercomputer used the computational fluid dynamics package FIDAP (FDI, Evanston, IL). Distinct streams of bulk flow evident in the simulations matched inspiratory streams reported for the F344 rat. Moreover, simulated regional flow velocities matched measured velocities in concurrent laboratory experiments with a hollow nasal mold. Computer-predicted flows were used in simulations of gas transport to nasal passage walls, with formaldehyde as a test case. Results from the uptake simulations were compared with the reported distribution of formaldehyde-induced nasal lesions observed in the F344 rat, and indicated that airflow-driven uptake patterns probably play an important role in determining the location of certain nasal lesions induced by formaldehyde. This work demonstrated the feasibility of applying computational fluid dynamics to airflow-driven dosimetry of inhaled chemicals in the upper respiratory tract.</description><identifier>ISSN: 0041-008X</identifier><identifier>EISSN: 1096-0333</identifier><identifier>DOI: 10.1006/taap.1993.1152</identifier><identifier>PMID: 8346542</identifier><identifier>CODEN: TXAPA9</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>551000 - Physiological Systems ; 560300 - Chemicals Metabolism &amp; Toxicology ; Administration, Inhalation ; AIR FLOW ; Air Pollutants - adverse effects ; Air Pollutants - pharmacokinetics ; ANIMALS ; BASIC BIOLOGICAL SCIENCES ; Biological and medical sciences ; BODY ; BODY AREAS ; Chemical and industrial products toxicology. Toxic occupational diseases ; Computer Simulation ; COMPUTERIZED SIMULATION ; DOSIMETRY ; FACE ; FLUID FLOW ; FLUIDS ; GAS FLOW ; Gas, fumes ; GASES ; Gases - adverse effects ; Gases - pharmacokinetics ; HEAD ; INHALATION ; INTAKE ; Male ; MAMMALS ; Medical sciences ; MEDICINE ; NOSE ; Nose - anatomy &amp; histology ; Nose - drug effects ; Nose - physiology ; NUCLEAR MEDICINE ; Pharmacokinetics ; POLLUTANTS ; Pulmonary Ventilation - physiology ; RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT ; RADIOLOGY ; RADIOTHERAPY ; Radiotherapy Planning, Computer-Assisted - methods ; RATS ; Rats, Inbred F344 ; RESPIRATION ; RESPIRATORY SYSTEM ; RODENTS ; SIMULATION ; THERAPY ; Toxicology ; VERTEBRATES</subject><ispartof>Toxicology and applied pharmacology, 1993-08, Vol.121 (2), p.253-263</ispartof><rights>1993 Academic Press</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-8dc107aaf83e097d631079afe7aff0d74eb75cedaa46abeabdd7cf39b0f1b1283</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/taap.1993.1152$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4871900$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8346542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5952454$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kimbell, J.S.</creatorcontrib><creatorcontrib>Gross, E.A.</creatorcontrib><creatorcontrib>Joyner, D.R.</creatorcontrib><creatorcontrib>Godo, M.N.</creatorcontrib><creatorcontrib>Morgan, K.T.</creatorcontrib><title>Application of Computational Fluid Dynamics to Regional Dosimetry of Inhaled Chemicals in the Upper Respiratory Tract of the Rat</title><title>Toxicology and applied pharmacology</title><addtitle>Toxicol Appl Pharmacol</addtitle><description>For certain inhaled air pollutants, such as reactive, water soluble gases, the distribution of nasal lesions observed in F344 rats may be closely related to regional gas uptake patterns in the nose. These uptake patterns can be influenced by the currents of air flowing through the upper respiratory tract during the breathing cycle. Since data on respiratory tract lesions in F344 rats are extrapolated to humans to make predictions of risk to human health, a better understanding of the factors affecting these responses is needed. To assess potential effects of nasal airflow on lesion location and severity, a methodology was developed for creation of computer simulations of steady-state airflow and gas transport using a three-dimensional finite element grid reconstructed from serial step-sections of the nasal passages of a male F344 rat. Simulations on a supercomputer used the computational fluid dynamics package FIDAP (FDI, Evanston, IL). Distinct streams of bulk flow evident in the simulations matched inspiratory streams reported for the F344 rat. Moreover, simulated regional flow velocities matched measured velocities in concurrent laboratory experiments with a hollow nasal mold. Computer-predicted flows were used in simulations of gas transport to nasal passage walls, with formaldehyde as a test case. Results from the uptake simulations were compared with the reported distribution of formaldehyde-induced nasal lesions observed in the F344 rat, and indicated that airflow-driven uptake patterns probably play an important role in determining the location of certain nasal lesions induced by formaldehyde. This work demonstrated the feasibility of applying computational fluid dynamics to airflow-driven dosimetry of inhaled chemicals in the upper respiratory tract.</description><subject>551000 - Physiological Systems</subject><subject>560300 - Chemicals Metabolism &amp; Toxicology</subject><subject>Administration, Inhalation</subject><subject>AIR FLOW</subject><subject>Air Pollutants - adverse effects</subject><subject>Air Pollutants - pharmacokinetics</subject><subject>ANIMALS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological and medical sciences</subject><subject>BODY</subject><subject>BODY AREAS</subject><subject>Chemical and industrial products toxicology. Toxic occupational diseases</subject><subject>Computer Simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DOSIMETRY</subject><subject>FACE</subject><subject>FLUID FLOW</subject><subject>FLUIDS</subject><subject>GAS FLOW</subject><subject>Gas, fumes</subject><subject>GASES</subject><subject>Gases - adverse effects</subject><subject>Gases - pharmacokinetics</subject><subject>HEAD</subject><subject>INHALATION</subject><subject>INTAKE</subject><subject>Male</subject><subject>MAMMALS</subject><subject>Medical sciences</subject><subject>MEDICINE</subject><subject>NOSE</subject><subject>Nose - anatomy &amp; histology</subject><subject>Nose - drug effects</subject><subject>Nose - physiology</subject><subject>NUCLEAR MEDICINE</subject><subject>Pharmacokinetics</subject><subject>POLLUTANTS</subject><subject>Pulmonary Ventilation - physiology</subject><subject>RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT</subject><subject>RADIOLOGY</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>RATS</subject><subject>Rats, Inbred F344</subject><subject>RESPIRATION</subject><subject>RESPIRATORY SYSTEM</subject><subject>RODENTS</subject><subject>SIMULATION</subject><subject>THERAPY</subject><subject>Toxicology</subject><subject>VERTEBRATES</subject><issn>0041-008X</issn><issn>1096-0333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc2LFDEQxYMo6-zo1ZsQRLz1mHSnP3JcZt11YUFYdsFbqE4qTqS70yZpYW7-6aadYW-eQvF-r8irR8g7znacseZzAph3XMpqx3ldviAbzmRTsKqqXpINY4IXjHXfX5PLGH8yxqQQ_IJcdJVoalFuyJ-reR6chuT8RL2lez_OS_o3wkBvhsUZen2cYHQ60uTpA_44Sdc-uhFTOK6uu-kAAxq6P2AGYYjUTTQdkD7NM4ZsirMLkHymHwPotHpW-QHSG_LKZgO-Pb9b8nTz5XH_tbj_dnu3v7ovtJBlKjqjOWsBbFchk61pqjxKsNiCtcy0Avu21mgARAM9Qm9Mq20le2Z5z8uu2pIPp70-Jqeidgn1QftpQp1ULetS1CJDn07QHPyvBWNSo4sahwEm9EtUvGkbwfKxt2R3AnXwMQa0ag5uhHBUnKm1F7X2otZe1NpLNrw_b176Ec0zfi4i6x_POsR8QBtg0i4-Y6JruWQsY90Jw3yq3w7DmgSnHNyFNYjx7n8_-AvKFatp</recordid><startdate>19930801</startdate><enddate>19930801</enddate><creator>Kimbell, J.S.</creator><creator>Gross, E.A.</creator><creator>Joyner, D.R.</creator><creator>Godo, M.N.</creator><creator>Morgan, K.T.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope><scope>OTOTI</scope></search><sort><creationdate>19930801</creationdate><title>Application of Computational Fluid Dynamics to Regional Dosimetry of Inhaled Chemicals in the Upper Respiratory Tract of the Rat</title><author>Kimbell, J.S. ; Gross, E.A. ; Joyner, D.R. ; Godo, M.N. ; Morgan, K.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-8dc107aaf83e097d631079afe7aff0d74eb75cedaa46abeabdd7cf39b0f1b1283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>551000 - Physiological Systems</topic><topic>560300 - Chemicals Metabolism &amp; Toxicology</topic><topic>Administration, Inhalation</topic><topic>AIR FLOW</topic><topic>Air Pollutants - adverse effects</topic><topic>Air Pollutants - pharmacokinetics</topic><topic>ANIMALS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological and medical sciences</topic><topic>BODY</topic><topic>BODY AREAS</topic><topic>Chemical and industrial products toxicology. Toxic occupational diseases</topic><topic>Computer Simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DOSIMETRY</topic><topic>FACE</topic><topic>FLUID FLOW</topic><topic>FLUIDS</topic><topic>GAS FLOW</topic><topic>Gas, fumes</topic><topic>GASES</topic><topic>Gases - adverse effects</topic><topic>Gases - pharmacokinetics</topic><topic>HEAD</topic><topic>INHALATION</topic><topic>INTAKE</topic><topic>Male</topic><topic>MAMMALS</topic><topic>Medical sciences</topic><topic>MEDICINE</topic><topic>NOSE</topic><topic>Nose - anatomy &amp; histology</topic><topic>Nose - drug effects</topic><topic>Nose - physiology</topic><topic>NUCLEAR MEDICINE</topic><topic>Pharmacokinetics</topic><topic>POLLUTANTS</topic><topic>Pulmonary Ventilation - physiology</topic><topic>RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT</topic><topic>RADIOLOGY</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>RATS</topic><topic>Rats, Inbred F344</topic><topic>RESPIRATION</topic><topic>RESPIRATORY SYSTEM</topic><topic>RODENTS</topic><topic>SIMULATION</topic><topic>THERAPY</topic><topic>Toxicology</topic><topic>VERTEBRATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimbell, J.S.</creatorcontrib><creatorcontrib>Gross, E.A.</creatorcontrib><creatorcontrib>Joyner, D.R.</creatorcontrib><creatorcontrib>Godo, M.N.</creatorcontrib><creatorcontrib>Morgan, K.T.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>OSTI.GOV</collection><jtitle>Toxicology and applied pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimbell, J.S.</au><au>Gross, E.A.</au><au>Joyner, D.R.</au><au>Godo, M.N.</au><au>Morgan, K.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Computational Fluid Dynamics to Regional Dosimetry of Inhaled Chemicals in the Upper Respiratory Tract of the Rat</atitle><jtitle>Toxicology and applied pharmacology</jtitle><addtitle>Toxicol Appl Pharmacol</addtitle><date>1993-08-01</date><risdate>1993</risdate><volume>121</volume><issue>2</issue><spage>253</spage><epage>263</epage><pages>253-263</pages><issn>0041-008X</issn><eissn>1096-0333</eissn><coden>TXAPA9</coden><abstract>For certain inhaled air pollutants, such as reactive, water soluble gases, the distribution of nasal lesions observed in F344 rats may be closely related to regional gas uptake patterns in the nose. These uptake patterns can be influenced by the currents of air flowing through the upper respiratory tract during the breathing cycle. Since data on respiratory tract lesions in F344 rats are extrapolated to humans to make predictions of risk to human health, a better understanding of the factors affecting these responses is needed. To assess potential effects of nasal airflow on lesion location and severity, a methodology was developed for creation of computer simulations of steady-state airflow and gas transport using a three-dimensional finite element grid reconstructed from serial step-sections of the nasal passages of a male F344 rat. Simulations on a supercomputer used the computational fluid dynamics package FIDAP (FDI, Evanston, IL). Distinct streams of bulk flow evident in the simulations matched inspiratory streams reported for the F344 rat. Moreover, simulated regional flow velocities matched measured velocities in concurrent laboratory experiments with a hollow nasal mold. Computer-predicted flows were used in simulations of gas transport to nasal passage walls, with formaldehyde as a test case. Results from the uptake simulations were compared with the reported distribution of formaldehyde-induced nasal lesions observed in the F344 rat, and indicated that airflow-driven uptake patterns probably play an important role in determining the location of certain nasal lesions induced by formaldehyde. This work demonstrated the feasibility of applying computational fluid dynamics to airflow-driven dosimetry of inhaled chemicals in the upper respiratory tract.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>8346542</pmid><doi>10.1006/taap.1993.1152</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-008X
ispartof Toxicology and applied pharmacology, 1993-08, Vol.121 (2), p.253-263
issn 0041-008X
1096-0333
language eng
recordid cdi_osti_scitechconnect_5952454
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects 551000 - Physiological Systems
560300 - Chemicals Metabolism & Toxicology
Administration, Inhalation
AIR FLOW
Air Pollutants - adverse effects
Air Pollutants - pharmacokinetics
ANIMALS
BASIC BIOLOGICAL SCIENCES
Biological and medical sciences
BODY
BODY AREAS
Chemical and industrial products toxicology. Toxic occupational diseases
Computer Simulation
COMPUTERIZED SIMULATION
DOSIMETRY
FACE
FLUID FLOW
FLUIDS
GAS FLOW
Gas, fumes
GASES
Gases - adverse effects
Gases - pharmacokinetics
HEAD
INHALATION
INTAKE
Male
MAMMALS
Medical sciences
MEDICINE
NOSE
Nose - anatomy & histology
Nose - drug effects
Nose - physiology
NUCLEAR MEDICINE
Pharmacokinetics
POLLUTANTS
Pulmonary Ventilation - physiology
RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT
RADIOLOGY
RADIOTHERAPY
Radiotherapy Planning, Computer-Assisted - methods
RATS
Rats, Inbred F344
RESPIRATION
RESPIRATORY SYSTEM
RODENTS
SIMULATION
THERAPY
Toxicology
VERTEBRATES
title Application of Computational Fluid Dynamics to Regional Dosimetry of Inhaled Chemicals in the Upper Respiratory Tract of the Rat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Computational%20Fluid%20Dynamics%20to%20Regional%20Dosimetry%20of%20Inhaled%20Chemicals%20in%20the%20Upper%20Respiratory%20Tract%20of%20the%20Rat&rft.jtitle=Toxicology%20and%20applied%20pharmacology&rft.au=Kimbell,%20J.S.&rft.date=1993-08-01&rft.volume=121&rft.issue=2&rft.spage=253&rft.epage=263&rft.pages=253-263&rft.issn=0041-008X&rft.eissn=1096-0333&rft.coden=TXAPA9&rft_id=info:doi/10.1006/taap.1993.1152&rft_dat=%3Cproquest_osti_%3E16764099%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16764099&rft_id=info:pmid/8346542&rft_els_id=S0041008X8371152X&rfr_iscdi=true