A search for the classical model of spin

The study of the motion of the magnetic top--a classical spherical top which carries magnetic moment proportional to its angular momentum--is motivated and inspired by the quantum mechanical relation between spin angular momentum and spin magnetic moment. Inversely, the magnetic top, taken to be the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of physics 1993-05, Vol.23 (5), p.819-835
Hauptverfasser: BOZIC, M, MARIC, Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 835
container_issue 5
container_start_page 819
container_title Foundations of physics
container_volume 23
creator BOZIC, M
MARIC, Z
description The study of the motion of the magnetic top--a classical spherical top which carries magnetic moment proportional to its angular momentum--is motivated and inspired by the quantum mechanical relation between spin angular momentum and spin magnetic moment. Inversely, the magnetic top, taken to be the classical model of quantum spin, implies the description of spin states by probability amplitudes of the top orientation angles, instead of by Pauli spinors. This opens new possibilities for the interpretation of many interesting spin experiments which serve as tests of basic principles of quantum mechanics and of the postulates of the quantum theory of measurement. In the present paper, the authors describe some results of the research on the origin of spin, which lead to the theory of the quantum magnetic top. Quantization of the magnetic top leads to the Hamilton operator with eigenvalues equivalent to the eigenvalues of the Pauli operator. Open problems related to the magnetic to are also discussed. 32 refs., 1 fig.
doi_str_mv 10.1007/BF01883811
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5948393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4831989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-6b504348823cc078d0fad0abd5ea83609a3eee45e25383bea400d373d667dbac3</originalsourceid><addsrcrecordid>eNpFkEFLxDAUhIMouK5e_AVBPIhQfelL0uS4iqvCghc9l9fkla102yXpxX9vZUVPc5hvBmaEuFRwpwCq-4c1KOfQKXUkFspUZeGNssdiAaBM4WfzVJzl_AkAvrJ6IW5WMjOlsJXtmOS0ZRl6yrkL1MvdGLmXYyvzvhvOxUlLfeaLX12Kj_XT--NLsXl7fn1cbYpQajsVtjGgUTtXYghQuQgtRaAmGiaHFjwhM2vDpUGHDZMGiFhhtLaKDQVciqtD75inrs6hmzhswzgMHKbaeO3Q4wzdHqCQxpwTt_U-dTtKX7WC-ueI-v-IGb4-wHvK86w20RC6_JeYG5V3Hr8BhOlaUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A search for the classical model of spin</title><source>SpringerLink Journals - AutoHoldings</source><creator>BOZIC, M ; MARIC, Z</creator><creatorcontrib>BOZIC, M ; MARIC, Z</creatorcontrib><description>The study of the motion of the magnetic top--a classical spherical top which carries magnetic moment proportional to its angular momentum--is motivated and inspired by the quantum mechanical relation between spin angular momentum and spin magnetic moment. Inversely, the magnetic top, taken to be the classical model of quantum spin, implies the description of spin states by probability amplitudes of the top orientation angles, instead of by Pauli spinors. This opens new possibilities for the interpretation of many interesting spin experiments which serve as tests of basic principles of quantum mechanics and of the postulates of the quantum theory of measurement. In the present paper, the authors describe some results of the research on the origin of spin, which lead to the theory of the quantum magnetic top. Quantization of the magnetic top leads to the Hamilton operator with eigenvalues equivalent to the eigenvalues of the Pauli operator. Open problems related to the magnetic to are also discussed. 32 refs., 1 fig.</description><identifier>ISSN: 0015-9018</identifier><identifier>EISSN: 1572-9516</identifier><identifier>DOI: 10.1007/BF01883811</identifier><identifier>CODEN: FNDPA4</identifier><language>eng</language><publisher>New York, NY: Kluwer/Plenum</publisher><subject>661100 - Classical &amp; Quantum Mechanics- (1992-) ; 662000 - Physics of Elementary Particles &amp; Fields- (1992-) ; ANGULAR MOMENTUM ; ANGULAR MOMENTUM OPERATORS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical and quantum physics: mechanics and fields ; CLASSICAL MECHANICS ; CORRELATIONS ; EIGENVALUES ; Exact sciences and technology ; MAGNETIC MOMENTS ; MATHEMATICAL OPERATORS ; MECHANICS ; PARTICLE PROPERTIES ; PAULI SPIN OPERATORS ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; PROBABILITY ; QUANTIZATION ; QUANTUM MECHANICS ; QUANTUM OPERATORS ; SPIN ; SPINORS</subject><ispartof>Foundations of physics, 1993-05, Vol.23 (5), p.819-835</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-6b504348823cc078d0fad0abd5ea83609a3eee45e25383bea400d373d667dbac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4831989$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5948393$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>BOZIC, M</creatorcontrib><creatorcontrib>MARIC, Z</creatorcontrib><title>A search for the classical model of spin</title><title>Foundations of physics</title><description>The study of the motion of the magnetic top--a classical spherical top which carries magnetic moment proportional to its angular momentum--is motivated and inspired by the quantum mechanical relation between spin angular momentum and spin magnetic moment. Inversely, the magnetic top, taken to be the classical model of quantum spin, implies the description of spin states by probability amplitudes of the top orientation angles, instead of by Pauli spinors. This opens new possibilities for the interpretation of many interesting spin experiments which serve as tests of basic principles of quantum mechanics and of the postulates of the quantum theory of measurement. In the present paper, the authors describe some results of the research on the origin of spin, which lead to the theory of the quantum magnetic top. Quantization of the magnetic top leads to the Hamilton operator with eigenvalues equivalent to the eigenvalues of the Pauli operator. Open problems related to the magnetic to are also discussed. 32 refs., 1 fig.</description><subject>661100 - Classical &amp; Quantum Mechanics- (1992-)</subject><subject>662000 - Physics of Elementary Particles &amp; Fields- (1992-)</subject><subject>ANGULAR MOMENTUM</subject><subject>ANGULAR MOMENTUM OPERATORS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>CLASSICAL MECHANICS</subject><subject>CORRELATIONS</subject><subject>EIGENVALUES</subject><subject>Exact sciences and technology</subject><subject>MAGNETIC MOMENTS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MECHANICS</subject><subject>PARTICLE PROPERTIES</subject><subject>PAULI SPIN OPERATORS</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>PROBABILITY</subject><subject>QUANTIZATION</subject><subject>QUANTUM MECHANICS</subject><subject>QUANTUM OPERATORS</subject><subject>SPIN</subject><subject>SPINORS</subject><issn>0015-9018</issn><issn>1572-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLxDAUhIMouK5e_AVBPIhQfelL0uS4iqvCghc9l9fkla102yXpxX9vZUVPc5hvBmaEuFRwpwCq-4c1KOfQKXUkFspUZeGNssdiAaBM4WfzVJzl_AkAvrJ6IW5WMjOlsJXtmOS0ZRl6yrkL1MvdGLmXYyvzvhvOxUlLfeaLX12Kj_XT--NLsXl7fn1cbYpQajsVtjGgUTtXYghQuQgtRaAmGiaHFjwhM2vDpUGHDZMGiFhhtLaKDQVciqtD75inrs6hmzhswzgMHKbaeO3Q4wzdHqCQxpwTt_U-dTtKX7WC-ueI-v-IGb4-wHvK86w20RC6_JeYG5V3Hr8BhOlaUg</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>BOZIC, M</creator><creator>MARIC, Z</creator><general>Kluwer/Plenum</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19930501</creationdate><title>A search for the classical model of spin</title><author>BOZIC, M ; MARIC, Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-6b504348823cc078d0fad0abd5ea83609a3eee45e25383bea400d373d667dbac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>661100 - Classical &amp; Quantum Mechanics- (1992-)</topic><topic>662000 - Physics of Elementary Particles &amp; Fields- (1992-)</topic><topic>ANGULAR MOMENTUM</topic><topic>ANGULAR MOMENTUM OPERATORS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>CLASSICAL MECHANICS</topic><topic>CORRELATIONS</topic><topic>EIGENVALUES</topic><topic>Exact sciences and technology</topic><topic>MAGNETIC MOMENTS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MECHANICS</topic><topic>PARTICLE PROPERTIES</topic><topic>PAULI SPIN OPERATORS</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>PROBABILITY</topic><topic>QUANTIZATION</topic><topic>QUANTUM MECHANICS</topic><topic>QUANTUM OPERATORS</topic><topic>SPIN</topic><topic>SPINORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOZIC, M</creatorcontrib><creatorcontrib>MARIC, Z</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Foundations of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOZIC, M</au><au>MARIC, Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A search for the classical model of spin</atitle><jtitle>Foundations of physics</jtitle><date>1993-05-01</date><risdate>1993</risdate><volume>23</volume><issue>5</issue><spage>819</spage><epage>835</epage><pages>819-835</pages><issn>0015-9018</issn><eissn>1572-9516</eissn><coden>FNDPA4</coden><abstract>The study of the motion of the magnetic top--a classical spherical top which carries magnetic moment proportional to its angular momentum--is motivated and inspired by the quantum mechanical relation between spin angular momentum and spin magnetic moment. Inversely, the magnetic top, taken to be the classical model of quantum spin, implies the description of spin states by probability amplitudes of the top orientation angles, instead of by Pauli spinors. This opens new possibilities for the interpretation of many interesting spin experiments which serve as tests of basic principles of quantum mechanics and of the postulates of the quantum theory of measurement. In the present paper, the authors describe some results of the research on the origin of spin, which lead to the theory of the quantum magnetic top. Quantization of the magnetic top leads to the Hamilton operator with eigenvalues equivalent to the eigenvalues of the Pauli operator. Open problems related to the magnetic to are also discussed. 32 refs., 1 fig.</abstract><cop>New York, NY</cop><pub>Kluwer/Plenum</pub><doi>10.1007/BF01883811</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-9018
ispartof Foundations of physics, 1993-05, Vol.23 (5), p.819-835
issn 0015-9018
1572-9516
language eng
recordid cdi_osti_scitechconnect_5948393
source SpringerLink Journals - AutoHoldings
subjects 661100 - Classical & Quantum Mechanics- (1992-)
662000 - Physics of Elementary Particles & Fields- (1992-)
ANGULAR MOMENTUM
ANGULAR MOMENTUM OPERATORS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Classical and quantum physics: mechanics and fields
CLASSICAL MECHANICS
CORRELATIONS
EIGENVALUES
Exact sciences and technology
MAGNETIC MOMENTS
MATHEMATICAL OPERATORS
MECHANICS
PARTICLE PROPERTIES
PAULI SPIN OPERATORS
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
PROBABILITY
QUANTIZATION
QUANTUM MECHANICS
QUANTUM OPERATORS
SPIN
SPINORS
title A search for the classical model of spin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20search%20for%20the%20classical%20model%20of%20spin&rft.jtitle=Foundations%20of%20physics&rft.au=BOZIC,%20M&rft.date=1993-05-01&rft.volume=23&rft.issue=5&rft.spage=819&rft.epage=835&rft.pages=819-835&rft.issn=0015-9018&rft.eissn=1572-9516&rft.coden=FNDPA4&rft_id=info:doi/10.1007/BF01883811&rft_dat=%3Cpascalfrancis_osti_%3E4831989%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true