A search for the classical model of spin
The study of the motion of the magnetic top--a classical spherical top which carries magnetic moment proportional to its angular momentum--is motivated and inspired by the quantum mechanical relation between spin angular momentum and spin magnetic moment. Inversely, the magnetic top, taken to be the...
Gespeichert in:
Veröffentlicht in: | Foundations of physics 1993-05, Vol.23 (5), p.819-835 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 835 |
---|---|
container_issue | 5 |
container_start_page | 819 |
container_title | Foundations of physics |
container_volume | 23 |
creator | BOZIC, M MARIC, Z |
description | The study of the motion of the magnetic top--a classical spherical top which carries magnetic moment proportional to its angular momentum--is motivated and inspired by the quantum mechanical relation between spin angular momentum and spin magnetic moment. Inversely, the magnetic top, taken to be the classical model of quantum spin, implies the description of spin states by probability amplitudes of the top orientation angles, instead of by Pauli spinors. This opens new possibilities for the interpretation of many interesting spin experiments which serve as tests of basic principles of quantum mechanics and of the postulates of the quantum theory of measurement. In the present paper, the authors describe some results of the research on the origin of spin, which lead to the theory of the quantum magnetic top. Quantization of the magnetic top leads to the Hamilton operator with eigenvalues equivalent to the eigenvalues of the Pauli operator. Open problems related to the magnetic to are also discussed. 32 refs., 1 fig. |
doi_str_mv | 10.1007/BF01883811 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5948393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4831989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-6b504348823cc078d0fad0abd5ea83609a3eee45e25383bea400d373d667dbac3</originalsourceid><addsrcrecordid>eNpFkEFLxDAUhIMouK5e_AVBPIhQfelL0uS4iqvCghc9l9fkla102yXpxX9vZUVPc5hvBmaEuFRwpwCq-4c1KOfQKXUkFspUZeGNssdiAaBM4WfzVJzl_AkAvrJ6IW5WMjOlsJXtmOS0ZRl6yrkL1MvdGLmXYyvzvhvOxUlLfeaLX12Kj_XT--NLsXl7fn1cbYpQajsVtjGgUTtXYghQuQgtRaAmGiaHFjwhM2vDpUGHDZMGiFhhtLaKDQVciqtD75inrs6hmzhswzgMHKbaeO3Q4wzdHqCQxpwTt_U-dTtKX7WC-ueI-v-IGb4-wHvK86w20RC6_JeYG5V3Hr8BhOlaUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A search for the classical model of spin</title><source>SpringerLink Journals - AutoHoldings</source><creator>BOZIC, M ; MARIC, Z</creator><creatorcontrib>BOZIC, M ; MARIC, Z</creatorcontrib><description>The study of the motion of the magnetic top--a classical spherical top which carries magnetic moment proportional to its angular momentum--is motivated and inspired by the quantum mechanical relation between spin angular momentum and spin magnetic moment. Inversely, the magnetic top, taken to be the classical model of quantum spin, implies the description of spin states by probability amplitudes of the top orientation angles, instead of by Pauli spinors. This opens new possibilities for the interpretation of many interesting spin experiments which serve as tests of basic principles of quantum mechanics and of the postulates of the quantum theory of measurement. In the present paper, the authors describe some results of the research on the origin of spin, which lead to the theory of the quantum magnetic top. Quantization of the magnetic top leads to the Hamilton operator with eigenvalues equivalent to the eigenvalues of the Pauli operator. Open problems related to the magnetic to are also discussed. 32 refs., 1 fig.</description><identifier>ISSN: 0015-9018</identifier><identifier>EISSN: 1572-9516</identifier><identifier>DOI: 10.1007/BF01883811</identifier><identifier>CODEN: FNDPA4</identifier><language>eng</language><publisher>New York, NY: Kluwer/Plenum</publisher><subject>661100 - Classical & Quantum Mechanics- (1992-) ; 662000 - Physics of Elementary Particles & Fields- (1992-) ; ANGULAR MOMENTUM ; ANGULAR MOMENTUM OPERATORS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical and quantum physics: mechanics and fields ; CLASSICAL MECHANICS ; CORRELATIONS ; EIGENVALUES ; Exact sciences and technology ; MAGNETIC MOMENTS ; MATHEMATICAL OPERATORS ; MECHANICS ; PARTICLE PROPERTIES ; PAULI SPIN OPERATORS ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; PROBABILITY ; QUANTIZATION ; QUANTUM MECHANICS ; QUANTUM OPERATORS ; SPIN ; SPINORS</subject><ispartof>Foundations of physics, 1993-05, Vol.23 (5), p.819-835</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-6b504348823cc078d0fad0abd5ea83609a3eee45e25383bea400d373d667dbac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4831989$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5948393$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>BOZIC, M</creatorcontrib><creatorcontrib>MARIC, Z</creatorcontrib><title>A search for the classical model of spin</title><title>Foundations of physics</title><description>The study of the motion of the magnetic top--a classical spherical top which carries magnetic moment proportional to its angular momentum--is motivated and inspired by the quantum mechanical relation between spin angular momentum and spin magnetic moment. Inversely, the magnetic top, taken to be the classical model of quantum spin, implies the description of spin states by probability amplitudes of the top orientation angles, instead of by Pauli spinors. This opens new possibilities for the interpretation of many interesting spin experiments which serve as tests of basic principles of quantum mechanics and of the postulates of the quantum theory of measurement. In the present paper, the authors describe some results of the research on the origin of spin, which lead to the theory of the quantum magnetic top. Quantization of the magnetic top leads to the Hamilton operator with eigenvalues equivalent to the eigenvalues of the Pauli operator. Open problems related to the magnetic to are also discussed. 32 refs., 1 fig.</description><subject>661100 - Classical & Quantum Mechanics- (1992-)</subject><subject>662000 - Physics of Elementary Particles & Fields- (1992-)</subject><subject>ANGULAR MOMENTUM</subject><subject>ANGULAR MOMENTUM OPERATORS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>CLASSICAL MECHANICS</subject><subject>CORRELATIONS</subject><subject>EIGENVALUES</subject><subject>Exact sciences and technology</subject><subject>MAGNETIC MOMENTS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MECHANICS</subject><subject>PARTICLE PROPERTIES</subject><subject>PAULI SPIN OPERATORS</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>PROBABILITY</subject><subject>QUANTIZATION</subject><subject>QUANTUM MECHANICS</subject><subject>QUANTUM OPERATORS</subject><subject>SPIN</subject><subject>SPINORS</subject><issn>0015-9018</issn><issn>1572-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLxDAUhIMouK5e_AVBPIhQfelL0uS4iqvCghc9l9fkla102yXpxX9vZUVPc5hvBmaEuFRwpwCq-4c1KOfQKXUkFspUZeGNssdiAaBM4WfzVJzl_AkAvrJ6IW5WMjOlsJXtmOS0ZRl6yrkL1MvdGLmXYyvzvhvOxUlLfeaLX12Kj_XT--NLsXl7fn1cbYpQajsVtjGgUTtXYghQuQgtRaAmGiaHFjwhM2vDpUGHDZMGiFhhtLaKDQVciqtD75inrs6hmzhswzgMHKbaeO3Q4wzdHqCQxpwTt_U-dTtKX7WC-ueI-v-IGb4-wHvK86w20RC6_JeYG5V3Hr8BhOlaUg</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>BOZIC, M</creator><creator>MARIC, Z</creator><general>Kluwer/Plenum</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19930501</creationdate><title>A search for the classical model of spin</title><author>BOZIC, M ; MARIC, Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-6b504348823cc078d0fad0abd5ea83609a3eee45e25383bea400d373d667dbac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>661100 - Classical & Quantum Mechanics- (1992-)</topic><topic>662000 - Physics of Elementary Particles & Fields- (1992-)</topic><topic>ANGULAR MOMENTUM</topic><topic>ANGULAR MOMENTUM OPERATORS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>CLASSICAL MECHANICS</topic><topic>CORRELATIONS</topic><topic>EIGENVALUES</topic><topic>Exact sciences and technology</topic><topic>MAGNETIC MOMENTS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MECHANICS</topic><topic>PARTICLE PROPERTIES</topic><topic>PAULI SPIN OPERATORS</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>PROBABILITY</topic><topic>QUANTIZATION</topic><topic>QUANTUM MECHANICS</topic><topic>QUANTUM OPERATORS</topic><topic>SPIN</topic><topic>SPINORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOZIC, M</creatorcontrib><creatorcontrib>MARIC, Z</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Foundations of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOZIC, M</au><au>MARIC, Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A search for the classical model of spin</atitle><jtitle>Foundations of physics</jtitle><date>1993-05-01</date><risdate>1993</risdate><volume>23</volume><issue>5</issue><spage>819</spage><epage>835</epage><pages>819-835</pages><issn>0015-9018</issn><eissn>1572-9516</eissn><coden>FNDPA4</coden><abstract>The study of the motion of the magnetic top--a classical spherical top which carries magnetic moment proportional to its angular momentum--is motivated and inspired by the quantum mechanical relation between spin angular momentum and spin magnetic moment. Inversely, the magnetic top, taken to be the classical model of quantum spin, implies the description of spin states by probability amplitudes of the top orientation angles, instead of by Pauli spinors. This opens new possibilities for the interpretation of many interesting spin experiments which serve as tests of basic principles of quantum mechanics and of the postulates of the quantum theory of measurement. In the present paper, the authors describe some results of the research on the origin of spin, which lead to the theory of the quantum magnetic top. Quantization of the magnetic top leads to the Hamilton operator with eigenvalues equivalent to the eigenvalues of the Pauli operator. Open problems related to the magnetic to are also discussed. 32 refs., 1 fig.</abstract><cop>New York, NY</cop><pub>Kluwer/Plenum</pub><doi>10.1007/BF01883811</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-9018 |
ispartof | Foundations of physics, 1993-05, Vol.23 (5), p.819-835 |
issn | 0015-9018 1572-9516 |
language | eng |
recordid | cdi_osti_scitechconnect_5948393 |
source | SpringerLink Journals - AutoHoldings |
subjects | 661100 - Classical & Quantum Mechanics- (1992-) 662000 - Physics of Elementary Particles & Fields- (1992-) ANGULAR MOMENTUM ANGULAR MOMENTUM OPERATORS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Classical and quantum physics: mechanics and fields CLASSICAL MECHANICS CORRELATIONS EIGENVALUES Exact sciences and technology MAGNETIC MOMENTS MATHEMATICAL OPERATORS MECHANICS PARTICLE PROPERTIES PAULI SPIN OPERATORS Physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS PROBABILITY QUANTIZATION QUANTUM MECHANICS QUANTUM OPERATORS SPIN SPINORS |
title | A search for the classical model of spin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20search%20for%20the%20classical%20model%20of%20spin&rft.jtitle=Foundations%20of%20physics&rft.au=BOZIC,%20M&rft.date=1993-05-01&rft.volume=23&rft.issue=5&rft.spage=819&rft.epage=835&rft.pages=819-835&rft.issn=0015-9018&rft.eissn=1572-9516&rft.coden=FNDPA4&rft_id=info:doi/10.1007/BF01883811&rft_dat=%3Cpascalfrancis_osti_%3E4831989%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |