Micromechanical fatigue testing
This paper describes the design, modeling, and experimental test results of a single crystal silicon micromechanical device developed to evaluate fracture and fatigue of silicon based micromechanical devices. The structure is a cantilever beam, 300 microns long, with a large silicon plate and gold i...
Gespeichert in:
Veröffentlicht in: | Experimental mechanics 1993-06, Vol.33 (2), p.81-90 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | 2 |
container_start_page | 81 |
container_title | Experimental mechanics |
container_volume | 33 |
creator | CONNALLY, J. A BROWN, S. B |
description | This paper describes the design, modeling, and experimental test results of a single crystal silicon micromechanical device developed to evaluate fracture and fatigue of silicon based micromechanical devices. The structure is a cantilever beam, 300 microns long, with a large silicon plate and gold inertial mass at the free end. Torquing and sensing electrodes extend over the plate, and with associated electronics, drive the structure at the shift in the natural frequency caused by the extension of a preexisting crack introduced near the fixed end of the cantilever. |
doi_str_mv | 10.1007/BF02322482 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5787779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26069917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-3ac9917e78a6b905ee4b2cafd427cfb6076cbb8efb8194d3fb2d0a196b1393b43</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKsb_4BFxIUwem-SyWOpxRdU3Og6JGlSI9OZOpku_PemtOjS1d1895zDR8gpwjUCyJu7B6CMUq7oHhmh5FhRKep9MgJAXnFV4yE5yvkTCswkHZGzl-T7bhn8h22Tt80k2iEt1mEyhDykdnFMDqJtcjjZ3TF5f7h_mz5Vs9fH5-ntrPJMsaFi1muNMkhlhdNQh8Ad9TbOOZU-OgFSeOdUiE6h5nMWHZ2DRS0cMs0cZ2Nyvs3tSq3JPg1lku_aNvjB1FJJKXWBLrfQqu--1mWgWabsQ9PYNnTrbKgAsZnxL4hClEC2qb3agkVCzn2IZtWnpe2_DYLZGDV_Rgt8sUu1uaiKvW19yr8fTANFiewHKYtzAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16677734</pqid></control><display><type>article</type><title>Micromechanical fatigue testing</title><source>SpringerLink Journals - AutoHoldings</source><creator>CONNALLY, J. A ; BROWN, S. B</creator><creatorcontrib>CONNALLY, J. A ; BROWN, S. B</creatorcontrib><description>This paper describes the design, modeling, and experimental test results of a single crystal silicon micromechanical device developed to evaluate fracture and fatigue of silicon based micromechanical devices. The structure is a cantilever beam, 300 microns long, with a large silicon plate and gold inertial mass at the free end. Torquing and sensing electrodes extend over the plate, and with associated electronics, drive the structure at the shift in the natural frequency caused by the extension of a preexisting crack introduced near the fixed end of the cantilever.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/BF02322482</identifier><identifier>CODEN: EXMCAZ</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>360603 - Materials- Properties ; Applied sciences ; CALCULATION METHODS ; COMPUTERIZED SIMULATION ; CRYSTALS ; DEGREES OF FREEDOM ; ELECTRODES ; ELEMENTS ; Exact sciences and technology ; FATIGUE ; FINITE ELEMENT METHOD ; FRACTURE MECHANICS ; FRACTURE PROPERTIES ; Industrial metrology. Testing ; MATERIALS SCIENCE ; Mechanical engineering. Machine design ; MECHANICAL PROPERTIES ; MECHANICS ; MICROSTRUCTURE ; MONOCRYSTALS ; Non-destructive testing: methods and equipments ; NUMERICAL SOLUTION ; Precision engineering, watch making ; SEMIMETALS ; SILICON ; SIMULATION ; TIME DEPENDENCE</subject><ispartof>Experimental mechanics, 1993-06, Vol.33 (2), p.81-90</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-3ac9917e78a6b905ee4b2cafd427cfb6076cbb8efb8194d3fb2d0a196b1393b43</citedby><cites>FETCH-LOGICAL-c383t-3ac9917e78a6b905ee4b2cafd427cfb6076cbb8efb8194d3fb2d0a196b1393b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3902171$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5787779$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>CONNALLY, J. A</creatorcontrib><creatorcontrib>BROWN, S. B</creatorcontrib><title>Micromechanical fatigue testing</title><title>Experimental mechanics</title><description>This paper describes the design, modeling, and experimental test results of a single crystal silicon micromechanical device developed to evaluate fracture and fatigue of silicon based micromechanical devices. The structure is a cantilever beam, 300 microns long, with a large silicon plate and gold inertial mass at the free end. Torquing and sensing electrodes extend over the plate, and with associated electronics, drive the structure at the shift in the natural frequency caused by the extension of a preexisting crack introduced near the fixed end of the cantilever.</description><subject>360603 - Materials- Properties</subject><subject>Applied sciences</subject><subject>CALCULATION METHODS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CRYSTALS</subject><subject>DEGREES OF FREEDOM</subject><subject>ELECTRODES</subject><subject>ELEMENTS</subject><subject>Exact sciences and technology</subject><subject>FATIGUE</subject><subject>FINITE ELEMENT METHOD</subject><subject>FRACTURE MECHANICS</subject><subject>FRACTURE PROPERTIES</subject><subject>Industrial metrology. Testing</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical engineering. Machine design</subject><subject>MECHANICAL PROPERTIES</subject><subject>MECHANICS</subject><subject>MICROSTRUCTURE</subject><subject>MONOCRYSTALS</subject><subject>Non-destructive testing: methods and equipments</subject><subject>NUMERICAL SOLUTION</subject><subject>Precision engineering, watch making</subject><subject>SEMIMETALS</subject><subject>SILICON</subject><subject>SIMULATION</subject><subject>TIME DEPENDENCE</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKsb_4BFxIUwem-SyWOpxRdU3Og6JGlSI9OZOpku_PemtOjS1d1895zDR8gpwjUCyJu7B6CMUq7oHhmh5FhRKep9MgJAXnFV4yE5yvkTCswkHZGzl-T7bhn8h22Tt80k2iEt1mEyhDykdnFMDqJtcjjZ3TF5f7h_mz5Vs9fH5-ntrPJMsaFi1muNMkhlhdNQh8Ad9TbOOZU-OgFSeOdUiE6h5nMWHZ2DRS0cMs0cZ2Nyvs3tSq3JPg1lku_aNvjB1FJJKXWBLrfQqu--1mWgWabsQ9PYNnTrbKgAsZnxL4hClEC2qb3agkVCzn2IZtWnpe2_DYLZGDV_Rgt8sUu1uaiKvW19yr8fTANFiewHKYtzAw</recordid><startdate>19930601</startdate><enddate>19930601</enddate><creator>CONNALLY, J. A</creator><creator>BROWN, S. B</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19930601</creationdate><title>Micromechanical fatigue testing</title><author>CONNALLY, J. A ; BROWN, S. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-3ac9917e78a6b905ee4b2cafd427cfb6076cbb8efb8194d3fb2d0a196b1393b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>360603 - Materials- Properties</topic><topic>Applied sciences</topic><topic>CALCULATION METHODS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CRYSTALS</topic><topic>DEGREES OF FREEDOM</topic><topic>ELECTRODES</topic><topic>ELEMENTS</topic><topic>Exact sciences and technology</topic><topic>FATIGUE</topic><topic>FINITE ELEMENT METHOD</topic><topic>FRACTURE MECHANICS</topic><topic>FRACTURE PROPERTIES</topic><topic>Industrial metrology. Testing</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical engineering. Machine design</topic><topic>MECHANICAL PROPERTIES</topic><topic>MECHANICS</topic><topic>MICROSTRUCTURE</topic><topic>MONOCRYSTALS</topic><topic>Non-destructive testing: methods and equipments</topic><topic>NUMERICAL SOLUTION</topic><topic>Precision engineering, watch making</topic><topic>SEMIMETALS</topic><topic>SILICON</topic><topic>SIMULATION</topic><topic>TIME DEPENDENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CONNALLY, J. A</creatorcontrib><creatorcontrib>BROWN, S. B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CONNALLY, J. A</au><au>BROWN, S. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical fatigue testing</atitle><jtitle>Experimental mechanics</jtitle><date>1993-06-01</date><risdate>1993</risdate><volume>33</volume><issue>2</issue><spage>81</spage><epage>90</epage><pages>81-90</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><coden>EXMCAZ</coden><abstract>This paper describes the design, modeling, and experimental test results of a single crystal silicon micromechanical device developed to evaluate fracture and fatigue of silicon based micromechanical devices. The structure is a cantilever beam, 300 microns long, with a large silicon plate and gold inertial mass at the free end. Torquing and sensing electrodes extend over the plate, and with associated electronics, drive the structure at the shift in the natural frequency caused by the extension of a preexisting crack introduced near the fixed end of the cantilever.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF02322482</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4851 |
ispartof | Experimental mechanics, 1993-06, Vol.33 (2), p.81-90 |
issn | 0014-4851 1741-2765 |
language | eng |
recordid | cdi_osti_scitechconnect_5787779 |
source | SpringerLink Journals - AutoHoldings |
subjects | 360603 - Materials- Properties Applied sciences CALCULATION METHODS COMPUTERIZED SIMULATION CRYSTALS DEGREES OF FREEDOM ELECTRODES ELEMENTS Exact sciences and technology FATIGUE FINITE ELEMENT METHOD FRACTURE MECHANICS FRACTURE PROPERTIES Industrial metrology. Testing MATERIALS SCIENCE Mechanical engineering. Machine design MECHANICAL PROPERTIES MECHANICS MICROSTRUCTURE MONOCRYSTALS Non-destructive testing: methods and equipments NUMERICAL SOLUTION Precision engineering, watch making SEMIMETALS SILICON SIMULATION TIME DEPENDENCE |
title | Micromechanical fatigue testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20fatigue%20testing&rft.jtitle=Experimental%20mechanics&rft.au=CONNALLY,%20J.%20A&rft.date=1993-06-01&rft.volume=33&rft.issue=2&rft.spage=81&rft.epage=90&rft.pages=81-90&rft.issn=0014-4851&rft.eissn=1741-2765&rft.coden=EXMCAZ&rft_id=info:doi/10.1007/BF02322482&rft_dat=%3Cproquest_osti_%3E26069917%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16677734&rft_id=info:pmid/&rfr_iscdi=true |