Micromechanical fatigue testing

This paper describes the design, modeling, and experimental test results of a single crystal silicon micromechanical device developed to evaluate fracture and fatigue of silicon based micromechanical devices. The structure is a cantilever beam, 300 microns long, with a large silicon plate and gold i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mechanics 1993-06, Vol.33 (2), p.81-90
Hauptverfasser: CONNALLY, J. A, BROWN, S. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 2
container_start_page 81
container_title Experimental mechanics
container_volume 33
creator CONNALLY, J. A
BROWN, S. B
description This paper describes the design, modeling, and experimental test results of a single crystal silicon micromechanical device developed to evaluate fracture and fatigue of silicon based micromechanical devices. The structure is a cantilever beam, 300 microns long, with a large silicon plate and gold inertial mass at the free end. Torquing and sensing electrodes extend over the plate, and with associated electronics, drive the structure at the shift in the natural frequency caused by the extension of a preexisting crack introduced near the fixed end of the cantilever.
doi_str_mv 10.1007/BF02322482
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5787779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26069917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-3ac9917e78a6b905ee4b2cafd427cfb6076cbb8efb8194d3fb2d0a196b1393b43</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKsb_4BFxIUwem-SyWOpxRdU3Og6JGlSI9OZOpku_PemtOjS1d1895zDR8gpwjUCyJu7B6CMUq7oHhmh5FhRKep9MgJAXnFV4yE5yvkTCswkHZGzl-T7bhn8h22Tt80k2iEt1mEyhDykdnFMDqJtcjjZ3TF5f7h_mz5Vs9fH5-ntrPJMsaFi1muNMkhlhdNQh8Ad9TbOOZU-OgFSeOdUiE6h5nMWHZ2DRS0cMs0cZ2Nyvs3tSq3JPg1lku_aNvjB1FJJKXWBLrfQqu--1mWgWabsQ9PYNnTrbKgAsZnxL4hClEC2qb3agkVCzn2IZtWnpe2_DYLZGDV_Rgt8sUu1uaiKvW19yr8fTANFiewHKYtzAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16677734</pqid></control><display><type>article</type><title>Micromechanical fatigue testing</title><source>SpringerLink Journals - AutoHoldings</source><creator>CONNALLY, J. A ; BROWN, S. B</creator><creatorcontrib>CONNALLY, J. A ; BROWN, S. B</creatorcontrib><description>This paper describes the design, modeling, and experimental test results of a single crystal silicon micromechanical device developed to evaluate fracture and fatigue of silicon based micromechanical devices. The structure is a cantilever beam, 300 microns long, with a large silicon plate and gold inertial mass at the free end. Torquing and sensing electrodes extend over the plate, and with associated electronics, drive the structure at the shift in the natural frequency caused by the extension of a preexisting crack introduced near the fixed end of the cantilever.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/BF02322482</identifier><identifier>CODEN: EXMCAZ</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>360603 - Materials- Properties ; Applied sciences ; CALCULATION METHODS ; COMPUTERIZED SIMULATION ; CRYSTALS ; DEGREES OF FREEDOM ; ELECTRODES ; ELEMENTS ; Exact sciences and technology ; FATIGUE ; FINITE ELEMENT METHOD ; FRACTURE MECHANICS ; FRACTURE PROPERTIES ; Industrial metrology. Testing ; MATERIALS SCIENCE ; Mechanical engineering. Machine design ; MECHANICAL PROPERTIES ; MECHANICS ; MICROSTRUCTURE ; MONOCRYSTALS ; Non-destructive testing: methods and equipments ; NUMERICAL SOLUTION ; Precision engineering, watch making ; SEMIMETALS ; SILICON ; SIMULATION ; TIME DEPENDENCE</subject><ispartof>Experimental mechanics, 1993-06, Vol.33 (2), p.81-90</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-3ac9917e78a6b905ee4b2cafd427cfb6076cbb8efb8194d3fb2d0a196b1393b43</citedby><cites>FETCH-LOGICAL-c383t-3ac9917e78a6b905ee4b2cafd427cfb6076cbb8efb8194d3fb2d0a196b1393b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3902171$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5787779$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>CONNALLY, J. A</creatorcontrib><creatorcontrib>BROWN, S. B</creatorcontrib><title>Micromechanical fatigue testing</title><title>Experimental mechanics</title><description>This paper describes the design, modeling, and experimental test results of a single crystal silicon micromechanical device developed to evaluate fracture and fatigue of silicon based micromechanical devices. The structure is a cantilever beam, 300 microns long, with a large silicon plate and gold inertial mass at the free end. Torquing and sensing electrodes extend over the plate, and with associated electronics, drive the structure at the shift in the natural frequency caused by the extension of a preexisting crack introduced near the fixed end of the cantilever.</description><subject>360603 - Materials- Properties</subject><subject>Applied sciences</subject><subject>CALCULATION METHODS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CRYSTALS</subject><subject>DEGREES OF FREEDOM</subject><subject>ELECTRODES</subject><subject>ELEMENTS</subject><subject>Exact sciences and technology</subject><subject>FATIGUE</subject><subject>FINITE ELEMENT METHOD</subject><subject>FRACTURE MECHANICS</subject><subject>FRACTURE PROPERTIES</subject><subject>Industrial metrology. Testing</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical engineering. Machine design</subject><subject>MECHANICAL PROPERTIES</subject><subject>MECHANICS</subject><subject>MICROSTRUCTURE</subject><subject>MONOCRYSTALS</subject><subject>Non-destructive testing: methods and equipments</subject><subject>NUMERICAL SOLUTION</subject><subject>Precision engineering, watch making</subject><subject>SEMIMETALS</subject><subject>SILICON</subject><subject>SIMULATION</subject><subject>TIME DEPENDENCE</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKsb_4BFxIUwem-SyWOpxRdU3Og6JGlSI9OZOpku_PemtOjS1d1895zDR8gpwjUCyJu7B6CMUq7oHhmh5FhRKep9MgJAXnFV4yE5yvkTCswkHZGzl-T7bhn8h22Tt80k2iEt1mEyhDykdnFMDqJtcjjZ3TF5f7h_mz5Vs9fH5-ntrPJMsaFi1muNMkhlhdNQh8Ad9TbOOZU-OgFSeOdUiE6h5nMWHZ2DRS0cMs0cZ2Nyvs3tSq3JPg1lku_aNvjB1FJJKXWBLrfQqu--1mWgWabsQ9PYNnTrbKgAsZnxL4hClEC2qb3agkVCzn2IZtWnpe2_DYLZGDV_Rgt8sUu1uaiKvW19yr8fTANFiewHKYtzAw</recordid><startdate>19930601</startdate><enddate>19930601</enddate><creator>CONNALLY, J. A</creator><creator>BROWN, S. B</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19930601</creationdate><title>Micromechanical fatigue testing</title><author>CONNALLY, J. A ; BROWN, S. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-3ac9917e78a6b905ee4b2cafd427cfb6076cbb8efb8194d3fb2d0a196b1393b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>360603 - Materials- Properties</topic><topic>Applied sciences</topic><topic>CALCULATION METHODS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CRYSTALS</topic><topic>DEGREES OF FREEDOM</topic><topic>ELECTRODES</topic><topic>ELEMENTS</topic><topic>Exact sciences and technology</topic><topic>FATIGUE</topic><topic>FINITE ELEMENT METHOD</topic><topic>FRACTURE MECHANICS</topic><topic>FRACTURE PROPERTIES</topic><topic>Industrial metrology. Testing</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical engineering. Machine design</topic><topic>MECHANICAL PROPERTIES</topic><topic>MECHANICS</topic><topic>MICROSTRUCTURE</topic><topic>MONOCRYSTALS</topic><topic>Non-destructive testing: methods and equipments</topic><topic>NUMERICAL SOLUTION</topic><topic>Precision engineering, watch making</topic><topic>SEMIMETALS</topic><topic>SILICON</topic><topic>SIMULATION</topic><topic>TIME DEPENDENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CONNALLY, J. A</creatorcontrib><creatorcontrib>BROWN, S. B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CONNALLY, J. A</au><au>BROWN, S. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical fatigue testing</atitle><jtitle>Experimental mechanics</jtitle><date>1993-06-01</date><risdate>1993</risdate><volume>33</volume><issue>2</issue><spage>81</spage><epage>90</epage><pages>81-90</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><coden>EXMCAZ</coden><abstract>This paper describes the design, modeling, and experimental test results of a single crystal silicon micromechanical device developed to evaluate fracture and fatigue of silicon based micromechanical devices. The structure is a cantilever beam, 300 microns long, with a large silicon plate and gold inertial mass at the free end. Torquing and sensing electrodes extend over the plate, and with associated electronics, drive the structure at the shift in the natural frequency caused by the extension of a preexisting crack introduced near the fixed end of the cantilever.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF02322482</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4851
ispartof Experimental mechanics, 1993-06, Vol.33 (2), p.81-90
issn 0014-4851
1741-2765
language eng
recordid cdi_osti_scitechconnect_5787779
source SpringerLink Journals - AutoHoldings
subjects 360603 - Materials- Properties
Applied sciences
CALCULATION METHODS
COMPUTERIZED SIMULATION
CRYSTALS
DEGREES OF FREEDOM
ELECTRODES
ELEMENTS
Exact sciences and technology
FATIGUE
FINITE ELEMENT METHOD
FRACTURE MECHANICS
FRACTURE PROPERTIES
Industrial metrology. Testing
MATERIALS SCIENCE
Mechanical engineering. Machine design
MECHANICAL PROPERTIES
MECHANICS
MICROSTRUCTURE
MONOCRYSTALS
Non-destructive testing: methods and equipments
NUMERICAL SOLUTION
Precision engineering, watch making
SEMIMETALS
SILICON
SIMULATION
TIME DEPENDENCE
title Micromechanical fatigue testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20fatigue%20testing&rft.jtitle=Experimental%20mechanics&rft.au=CONNALLY,%20J.%20A&rft.date=1993-06-01&rft.volume=33&rft.issue=2&rft.spage=81&rft.epage=90&rft.pages=81-90&rft.issn=0014-4851&rft.eissn=1741-2765&rft.coden=EXMCAZ&rft_id=info:doi/10.1007/BF02322482&rft_dat=%3Cproquest_osti_%3E26069917%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16677734&rft_id=info:pmid/&rfr_iscdi=true