Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport
A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodi...
Gespeichert in:
Veröffentlicht in: | Solar energy 1992, Vol.48 (1), p.21-30 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | Solar energy |
container_volume | 48 |
creator | Diver, R.B. Fish, J.D. Levitan, R. Levy, M. Meirovitch, E. Rosin, H. Paripatyadar, S.A. Richardson, J.T. |
description | A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodium. The catalyst, 0.5 wt% Rh on alumina, filled two of the tubes with the front surface of the box serving as the solar absorber. In operation, concentrated sunlight heated the front plate and vaporized sodium from a wire mesh wick attached to the other side. Sodium vapor condensed on the reactor tubes, releasing latent heat and returning to the wick by gravity. The receiver system performed satisfactorily in many tests under varying flow conditions. The maximum power absorbed was 7.5 kW at temperatures above 800°C. The feasibility of operating a heat pipe receiver/reactor under solar conditions was proven, and the advantages of reflux devices confirmed. |
doi_str_mv | 10.1016/0038-092X(92)90173-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5781050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0038092X92901738</els_id><sourcerecordid>3133063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-63dd3eabb67d028e4f0476590aed02bd5ba7ad3a4ef0e1feea7e85e08d592f963</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhk1poNu0L1B6EKWH5uBGsi1LvhRCaNNCIIck0JuYlUZrhV3LHWlD8_aRsyG99SCENN8M_3xV9VHwr4KL_pTzVtd8aH5_GZqTgQvV1vpVtRKdErVopHpdrV6QN9XblO54gYRWq2q8jlsgljFlFj2DiYUp44Ygo2MpurDfMUK_3f9lI0Jmc5ixfFgM90inhGBzJObLySPSLtoRd8HCluGEtHlgmWBKc6T8rjrysE34_vk-rm5_fL85_1lfXl38Oj-7rG3X6Vz3rXMtwnrdK8cbjZ3nnerlwAHLe-3kGhS4Fjr0HIVHBIVaItdODo0f-va4-nSYG1MOJtmQ0Y42ThPabKTSgkv-D5op_tmX3c1d3NNUcpmmFaoTfaMK1B0gSzGlIsHMFHZAD0Zws3g3i1SzSDVDY568G13aPj_PhlRE-CLAhvTSK3kZ_RThwwHzEA1sqCC314PopWpFKX47FLGYug9IyyI4WXSBlj1cDP8P8Qg2CqC5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231741627</pqid></control><display><type>article</type><title>Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Diver, R.B. ; Fish, J.D. ; Levitan, R. ; Levy, M. ; Meirovitch, E. ; Rosin, H. ; Paripatyadar, S.A. ; Richardson, J.T.</creator><creatorcontrib>Diver, R.B. ; Fish, J.D. ; Levitan, R. ; Levy, M. ; Meirovitch, E. ; Rosin, H. ; Paripatyadar, S.A. ; Richardson, J.T.</creatorcontrib><description>A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodium. The catalyst, 0.5 wt% Rh on alumina, filled two of the tubes with the front surface of the box serving as the solar absorber. In operation, concentrated sunlight heated the front plate and vaporized sodium from a wire mesh wick attached to the other side. Sodium vapor condensed on the reactor tubes, releasing latent heat and returning to the wick by gravity. The receiver system performed satisfactorily in many tests under varying flow conditions. The maximum power absorbed was 7.5 kW at temperatures above 800°C. The feasibility of operating a heat pipe receiver/reactor under solar conditions was proven, and the advantages of reflux devices confirmed.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/0038-092X(92)90173-8</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>140505 - Solar Energy Conversion- Photochemical, Photobiological, & Thermochemical Conversion- (1980-) ; ALKALI METALS ; Applied sciences ; CALENTAMIENTO ; CALOR ; CHALEUR ; CHAUFFAGE ; CHEMICAL REACTORS ; Chemicals ; ELEMENTS ; ENERGIA SOLAR ; ENERGIE SOLAIRE ; Energy ; ENERGY STORAGE ; ENERGY TRANSFER ; Equipments, installations and applications ; EVACUATED COLLECTORS ; Exact sciences and technology ; FLUIDS ; FURNACES ; Gases ; HEAT ; HEAT PIPES ; HEAT STORAGE ; HEAT TRANSFER ; HEAT TRANSFER FLUIDS ; HEATING ; ISRAEL ; LATENT HEAT ; METALS ; Natural energy ; SODIO ; SODIUM ; SOLAR ABSORBERS ; SOLAR COLLECTORS ; SOLAR ENERGY ; SOLAR EQUIPMENT ; solar furnace ; SOLAR FURNACES ; Solar thermal conversion ; STORAGE ; THERMOCHEMICAL HEAT STORAGE</subject><ispartof>Solar energy, 1992, Vol.48 (1), p.21-30</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-63dd3eabb67d028e4f0476590aed02bd5ba7ad3a4ef0e1feea7e85e08d592f963</citedby><cites>FETCH-LOGICAL-c448t-63dd3eabb67d028e4f0476590aed02bd5ba7ad3a4ef0e1feea7e85e08d592f963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0038-092X(92)90173-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,4021,27921,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5027350$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5781050$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Diver, R.B.</creatorcontrib><creatorcontrib>Fish, J.D.</creatorcontrib><creatorcontrib>Levitan, R.</creatorcontrib><creatorcontrib>Levy, M.</creatorcontrib><creatorcontrib>Meirovitch, E.</creatorcontrib><creatorcontrib>Rosin, H.</creatorcontrib><creatorcontrib>Paripatyadar, S.A.</creatorcontrib><creatorcontrib>Richardson, J.T.</creatorcontrib><title>Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport</title><title>Solar energy</title><description>A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodium. The catalyst, 0.5 wt% Rh on alumina, filled two of the tubes with the front surface of the box serving as the solar absorber. In operation, concentrated sunlight heated the front plate and vaporized sodium from a wire mesh wick attached to the other side. Sodium vapor condensed on the reactor tubes, releasing latent heat and returning to the wick by gravity. The receiver system performed satisfactorily in many tests under varying flow conditions. The maximum power absorbed was 7.5 kW at temperatures above 800°C. The feasibility of operating a heat pipe receiver/reactor under solar conditions was proven, and the advantages of reflux devices confirmed.</description><subject>140505 - Solar Energy Conversion- Photochemical, Photobiological, & Thermochemical Conversion- (1980-)</subject><subject>ALKALI METALS</subject><subject>Applied sciences</subject><subject>CALENTAMIENTO</subject><subject>CALOR</subject><subject>CHALEUR</subject><subject>CHAUFFAGE</subject><subject>CHEMICAL REACTORS</subject><subject>Chemicals</subject><subject>ELEMENTS</subject><subject>ENERGIA SOLAR</subject><subject>ENERGIE SOLAIRE</subject><subject>Energy</subject><subject>ENERGY STORAGE</subject><subject>ENERGY TRANSFER</subject><subject>Equipments, installations and applications</subject><subject>EVACUATED COLLECTORS</subject><subject>Exact sciences and technology</subject><subject>FLUIDS</subject><subject>FURNACES</subject><subject>Gases</subject><subject>HEAT</subject><subject>HEAT PIPES</subject><subject>HEAT STORAGE</subject><subject>HEAT TRANSFER</subject><subject>HEAT TRANSFER FLUIDS</subject><subject>HEATING</subject><subject>ISRAEL</subject><subject>LATENT HEAT</subject><subject>METALS</subject><subject>Natural energy</subject><subject>SODIO</subject><subject>SODIUM</subject><subject>SOLAR ABSORBERS</subject><subject>SOLAR COLLECTORS</subject><subject>SOLAR ENERGY</subject><subject>SOLAR EQUIPMENT</subject><subject>solar furnace</subject><subject>SOLAR FURNACES</subject><subject>Solar thermal conversion</subject><subject>STORAGE</subject><subject>THERMOCHEMICAL HEAT STORAGE</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhk1poNu0L1B6EKWH5uBGsi1LvhRCaNNCIIck0JuYlUZrhV3LHWlD8_aRsyG99SCENN8M_3xV9VHwr4KL_pTzVtd8aH5_GZqTgQvV1vpVtRKdErVopHpdrV6QN9XblO54gYRWq2q8jlsgljFlFj2DiYUp44Ygo2MpurDfMUK_3f9lI0Jmc5ixfFgM90inhGBzJObLySPSLtoRd8HCluGEtHlgmWBKc6T8rjrysE34_vk-rm5_fL85_1lfXl38Oj-7rG3X6Vz3rXMtwnrdK8cbjZ3nnerlwAHLe-3kGhS4Fjr0HIVHBIVaItdODo0f-va4-nSYG1MOJtmQ0Y42ThPabKTSgkv-D5op_tmX3c1d3NNUcpmmFaoTfaMK1B0gSzGlIsHMFHZAD0Zws3g3i1SzSDVDY568G13aPj_PhlRE-CLAhvTSK3kZ_RThwwHzEA1sqCC314PopWpFKX47FLGYug9IyyI4WXSBlj1cDP8P8Qg2CqC5</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Diver, R.B.</creator><creator>Fish, J.D.</creator><creator>Levitan, R.</creator><creator>Levy, M.</creator><creator>Meirovitch, E.</creator><creator>Rosin, H.</creator><creator>Paripatyadar, S.A.</creator><creator>Richardson, J.T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>1992</creationdate><title>Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport</title><author>Diver, R.B. ; Fish, J.D. ; Levitan, R. ; Levy, M. ; Meirovitch, E. ; Rosin, H. ; Paripatyadar, S.A. ; Richardson, J.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-63dd3eabb67d028e4f0476590aed02bd5ba7ad3a4ef0e1feea7e85e08d592f963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>140505 - Solar Energy Conversion- Photochemical, Photobiological, & Thermochemical Conversion- (1980-)</topic><topic>ALKALI METALS</topic><topic>Applied sciences</topic><topic>CALENTAMIENTO</topic><topic>CALOR</topic><topic>CHALEUR</topic><topic>CHAUFFAGE</topic><topic>CHEMICAL REACTORS</topic><topic>Chemicals</topic><topic>ELEMENTS</topic><topic>ENERGIA SOLAR</topic><topic>ENERGIE SOLAIRE</topic><topic>Energy</topic><topic>ENERGY STORAGE</topic><topic>ENERGY TRANSFER</topic><topic>Equipments, installations and applications</topic><topic>EVACUATED COLLECTORS</topic><topic>Exact sciences and technology</topic><topic>FLUIDS</topic><topic>FURNACES</topic><topic>Gases</topic><topic>HEAT</topic><topic>HEAT PIPES</topic><topic>HEAT STORAGE</topic><topic>HEAT TRANSFER</topic><topic>HEAT TRANSFER FLUIDS</topic><topic>HEATING</topic><topic>ISRAEL</topic><topic>LATENT HEAT</topic><topic>METALS</topic><topic>Natural energy</topic><topic>SODIO</topic><topic>SODIUM</topic><topic>SOLAR ABSORBERS</topic><topic>SOLAR COLLECTORS</topic><topic>SOLAR ENERGY</topic><topic>SOLAR EQUIPMENT</topic><topic>solar furnace</topic><topic>SOLAR FURNACES</topic><topic>Solar thermal conversion</topic><topic>STORAGE</topic><topic>THERMOCHEMICAL HEAT STORAGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diver, R.B.</creatorcontrib><creatorcontrib>Fish, J.D.</creatorcontrib><creatorcontrib>Levitan, R.</creatorcontrib><creatorcontrib>Levy, M.</creatorcontrib><creatorcontrib>Meirovitch, E.</creatorcontrib><creatorcontrib>Rosin, H.</creatorcontrib><creatorcontrib>Paripatyadar, S.A.</creatorcontrib><creatorcontrib>Richardson, J.T.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diver, R.B.</au><au>Fish, J.D.</au><au>Levitan, R.</au><au>Levy, M.</au><au>Meirovitch, E.</au><au>Rosin, H.</au><au>Paripatyadar, S.A.</au><au>Richardson, J.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport</atitle><jtitle>Solar energy</jtitle><date>1992</date><risdate>1992</risdate><volume>48</volume><issue>1</issue><spage>21</spage><epage>30</epage><pages>21-30</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodium. The catalyst, 0.5 wt% Rh on alumina, filled two of the tubes with the front surface of the box serving as the solar absorber. In operation, concentrated sunlight heated the front plate and vaporized sodium from a wire mesh wick attached to the other side. Sodium vapor condensed on the reactor tubes, releasing latent heat and returning to the wick by gravity. The receiver system performed satisfactorily in many tests under varying flow conditions. The maximum power absorbed was 7.5 kW at temperatures above 800°C. The feasibility of operating a heat pipe receiver/reactor under solar conditions was proven, and the advantages of reflux devices confirmed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0038-092X(92)90173-8</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 1992, Vol.48 (1), p.21-30 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_osti_scitechconnect_5781050 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | 140505 - Solar Energy Conversion- Photochemical, Photobiological, & Thermochemical Conversion- (1980-) ALKALI METALS Applied sciences CALENTAMIENTO CALOR CHALEUR CHAUFFAGE CHEMICAL REACTORS Chemicals ELEMENTS ENERGIA SOLAR ENERGIE SOLAIRE Energy ENERGY STORAGE ENERGY TRANSFER Equipments, installations and applications EVACUATED COLLECTORS Exact sciences and technology FLUIDS FURNACES Gases HEAT HEAT PIPES HEAT STORAGE HEAT TRANSFER HEAT TRANSFER FLUIDS HEATING ISRAEL LATENT HEAT METALS Natural energy SODIO SODIUM SOLAR ABSORBERS SOLAR COLLECTORS SOLAR ENERGY SOLAR EQUIPMENT solar furnace SOLAR FURNACES Solar thermal conversion STORAGE THERMOCHEMICAL HEAT STORAGE |
title | Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20test%20of%20an%20integrated%20sodium%20reflux%20heat%20pipe%20receiver/reactor%20for%20thermochemical%20energy%20transport&rft.jtitle=Solar%20energy&rft.au=Diver,%20R.B.&rft.date=1992&rft.volume=48&rft.issue=1&rft.spage=21&rft.epage=30&rft.pages=21-30&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/0038-092X(92)90173-8&rft_dat=%3Cproquest_osti_%3E3133063%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=231741627&rft_id=info:pmid/&rft_els_id=0038092X92901738&rfr_iscdi=true |