Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport

A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 1992, Vol.48 (1), p.21-30
Hauptverfasser: Diver, R.B., Fish, J.D., Levitan, R., Levy, M., Meirovitch, E., Rosin, H., Paripatyadar, S.A., Richardson, J.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 21
container_title Solar energy
container_volume 48
creator Diver, R.B.
Fish, J.D.
Levitan, R.
Levy, M.
Meirovitch, E.
Rosin, H.
Paripatyadar, S.A.
Richardson, J.T.
description A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodium. The catalyst, 0.5 wt% Rh on alumina, filled two of the tubes with the front surface of the box serving as the solar absorber. In operation, concentrated sunlight heated the front plate and vaporized sodium from a wire mesh wick attached to the other side. Sodium vapor condensed on the reactor tubes, releasing latent heat and returning to the wick by gravity. The receiver system performed satisfactorily in many tests under varying flow conditions. The maximum power absorbed was 7.5 kW at temperatures above 800°C. The feasibility of operating a heat pipe receiver/reactor under solar conditions was proven, and the advantages of reflux devices confirmed.
doi_str_mv 10.1016/0038-092X(92)90173-8
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5781050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0038092X92901738</els_id><sourcerecordid>3133063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-63dd3eabb67d028e4f0476590aed02bd5ba7ad3a4ef0e1feea7e85e08d592f963</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhk1poNu0L1B6EKWH5uBGsi1LvhRCaNNCIIck0JuYlUZrhV3LHWlD8_aRsyG99SCENN8M_3xV9VHwr4KL_pTzVtd8aH5_GZqTgQvV1vpVtRKdErVopHpdrV6QN9XblO54gYRWq2q8jlsgljFlFj2DiYUp44Ygo2MpurDfMUK_3f9lI0Jmc5ixfFgM90inhGBzJObLySPSLtoRd8HCluGEtHlgmWBKc6T8rjrysE34_vk-rm5_fL85_1lfXl38Oj-7rG3X6Vz3rXMtwnrdK8cbjZ3nnerlwAHLe-3kGhS4Fjr0HIVHBIVaItdODo0f-va4-nSYG1MOJtmQ0Y42ThPabKTSgkv-D5op_tmX3c1d3NNUcpmmFaoTfaMK1B0gSzGlIsHMFHZAD0Zws3g3i1SzSDVDY568G13aPj_PhlRE-CLAhvTSK3kZ_RThwwHzEA1sqCC314PopWpFKX47FLGYug9IyyI4WXSBlj1cDP8P8Qg2CqC5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231741627</pqid></control><display><type>article</type><title>Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Diver, R.B. ; Fish, J.D. ; Levitan, R. ; Levy, M. ; Meirovitch, E. ; Rosin, H. ; Paripatyadar, S.A. ; Richardson, J.T.</creator><creatorcontrib>Diver, R.B. ; Fish, J.D. ; Levitan, R. ; Levy, M. ; Meirovitch, E. ; Rosin, H. ; Paripatyadar, S.A. ; Richardson, J.T.</creatorcontrib><description>A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodium. The catalyst, 0.5 wt% Rh on alumina, filled two of the tubes with the front surface of the box serving as the solar absorber. In operation, concentrated sunlight heated the front plate and vaporized sodium from a wire mesh wick attached to the other side. Sodium vapor condensed on the reactor tubes, releasing latent heat and returning to the wick by gravity. The receiver system performed satisfactorily in many tests under varying flow conditions. The maximum power absorbed was 7.5 kW at temperatures above 800°C. The feasibility of operating a heat pipe receiver/reactor under solar conditions was proven, and the advantages of reflux devices confirmed.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/0038-092X(92)90173-8</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>140505 - Solar Energy Conversion- Photochemical, Photobiological, &amp; Thermochemical Conversion- (1980-) ; ALKALI METALS ; Applied sciences ; CALENTAMIENTO ; CALOR ; CHALEUR ; CHAUFFAGE ; CHEMICAL REACTORS ; Chemicals ; ELEMENTS ; ENERGIA SOLAR ; ENERGIE SOLAIRE ; Energy ; ENERGY STORAGE ; ENERGY TRANSFER ; Equipments, installations and applications ; EVACUATED COLLECTORS ; Exact sciences and technology ; FLUIDS ; FURNACES ; Gases ; HEAT ; HEAT PIPES ; HEAT STORAGE ; HEAT TRANSFER ; HEAT TRANSFER FLUIDS ; HEATING ; ISRAEL ; LATENT HEAT ; METALS ; Natural energy ; SODIO ; SODIUM ; SOLAR ABSORBERS ; SOLAR COLLECTORS ; SOLAR ENERGY ; SOLAR EQUIPMENT ; solar furnace ; SOLAR FURNACES ; Solar thermal conversion ; STORAGE ; THERMOCHEMICAL HEAT STORAGE</subject><ispartof>Solar energy, 1992, Vol.48 (1), p.21-30</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-63dd3eabb67d028e4f0476590aed02bd5ba7ad3a4ef0e1feea7e85e08d592f963</citedby><cites>FETCH-LOGICAL-c448t-63dd3eabb67d028e4f0476590aed02bd5ba7ad3a4ef0e1feea7e85e08d592f963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0038-092X(92)90173-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,4021,27921,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5027350$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5781050$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Diver, R.B.</creatorcontrib><creatorcontrib>Fish, J.D.</creatorcontrib><creatorcontrib>Levitan, R.</creatorcontrib><creatorcontrib>Levy, M.</creatorcontrib><creatorcontrib>Meirovitch, E.</creatorcontrib><creatorcontrib>Rosin, H.</creatorcontrib><creatorcontrib>Paripatyadar, S.A.</creatorcontrib><creatorcontrib>Richardson, J.T.</creatorcontrib><title>Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport</title><title>Solar energy</title><description>A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodium. The catalyst, 0.5 wt% Rh on alumina, filled two of the tubes with the front surface of the box serving as the solar absorber. In operation, concentrated sunlight heated the front plate and vaporized sodium from a wire mesh wick attached to the other side. Sodium vapor condensed on the reactor tubes, releasing latent heat and returning to the wick by gravity. The receiver system performed satisfactorily in many tests under varying flow conditions. The maximum power absorbed was 7.5 kW at temperatures above 800°C. The feasibility of operating a heat pipe receiver/reactor under solar conditions was proven, and the advantages of reflux devices confirmed.</description><subject>140505 - Solar Energy Conversion- Photochemical, Photobiological, &amp; Thermochemical Conversion- (1980-)</subject><subject>ALKALI METALS</subject><subject>Applied sciences</subject><subject>CALENTAMIENTO</subject><subject>CALOR</subject><subject>CHALEUR</subject><subject>CHAUFFAGE</subject><subject>CHEMICAL REACTORS</subject><subject>Chemicals</subject><subject>ELEMENTS</subject><subject>ENERGIA SOLAR</subject><subject>ENERGIE SOLAIRE</subject><subject>Energy</subject><subject>ENERGY STORAGE</subject><subject>ENERGY TRANSFER</subject><subject>Equipments, installations and applications</subject><subject>EVACUATED COLLECTORS</subject><subject>Exact sciences and technology</subject><subject>FLUIDS</subject><subject>FURNACES</subject><subject>Gases</subject><subject>HEAT</subject><subject>HEAT PIPES</subject><subject>HEAT STORAGE</subject><subject>HEAT TRANSFER</subject><subject>HEAT TRANSFER FLUIDS</subject><subject>HEATING</subject><subject>ISRAEL</subject><subject>LATENT HEAT</subject><subject>METALS</subject><subject>Natural energy</subject><subject>SODIO</subject><subject>SODIUM</subject><subject>SOLAR ABSORBERS</subject><subject>SOLAR COLLECTORS</subject><subject>SOLAR ENERGY</subject><subject>SOLAR EQUIPMENT</subject><subject>solar furnace</subject><subject>SOLAR FURNACES</subject><subject>Solar thermal conversion</subject><subject>STORAGE</subject><subject>THERMOCHEMICAL HEAT STORAGE</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhk1poNu0L1B6EKWH5uBGsi1LvhRCaNNCIIck0JuYlUZrhV3LHWlD8_aRsyG99SCENN8M_3xV9VHwr4KL_pTzVtd8aH5_GZqTgQvV1vpVtRKdErVopHpdrV6QN9XblO54gYRWq2q8jlsgljFlFj2DiYUp44Ygo2MpurDfMUK_3f9lI0Jmc5ixfFgM90inhGBzJObLySPSLtoRd8HCluGEtHlgmWBKc6T8rjrysE34_vk-rm5_fL85_1lfXl38Oj-7rG3X6Vz3rXMtwnrdK8cbjZ3nnerlwAHLe-3kGhS4Fjr0HIVHBIVaItdODo0f-va4-nSYG1MOJtmQ0Y42ThPabKTSgkv-D5op_tmX3c1d3NNUcpmmFaoTfaMK1B0gSzGlIsHMFHZAD0Zws3g3i1SzSDVDY568G13aPj_PhlRE-CLAhvTSK3kZ_RThwwHzEA1sqCC314PopWpFKX47FLGYug9IyyI4WXSBlj1cDP8P8Qg2CqC5</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Diver, R.B.</creator><creator>Fish, J.D.</creator><creator>Levitan, R.</creator><creator>Levy, M.</creator><creator>Meirovitch, E.</creator><creator>Rosin, H.</creator><creator>Paripatyadar, S.A.</creator><creator>Richardson, J.T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>1992</creationdate><title>Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport</title><author>Diver, R.B. ; Fish, J.D. ; Levitan, R. ; Levy, M. ; Meirovitch, E. ; Rosin, H. ; Paripatyadar, S.A. ; Richardson, J.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-63dd3eabb67d028e4f0476590aed02bd5ba7ad3a4ef0e1feea7e85e08d592f963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>140505 - Solar Energy Conversion- Photochemical, Photobiological, &amp; Thermochemical Conversion- (1980-)</topic><topic>ALKALI METALS</topic><topic>Applied sciences</topic><topic>CALENTAMIENTO</topic><topic>CALOR</topic><topic>CHALEUR</topic><topic>CHAUFFAGE</topic><topic>CHEMICAL REACTORS</topic><topic>Chemicals</topic><topic>ELEMENTS</topic><topic>ENERGIA SOLAR</topic><topic>ENERGIE SOLAIRE</topic><topic>Energy</topic><topic>ENERGY STORAGE</topic><topic>ENERGY TRANSFER</topic><topic>Equipments, installations and applications</topic><topic>EVACUATED COLLECTORS</topic><topic>Exact sciences and technology</topic><topic>FLUIDS</topic><topic>FURNACES</topic><topic>Gases</topic><topic>HEAT</topic><topic>HEAT PIPES</topic><topic>HEAT STORAGE</topic><topic>HEAT TRANSFER</topic><topic>HEAT TRANSFER FLUIDS</topic><topic>HEATING</topic><topic>ISRAEL</topic><topic>LATENT HEAT</topic><topic>METALS</topic><topic>Natural energy</topic><topic>SODIO</topic><topic>SODIUM</topic><topic>SOLAR ABSORBERS</topic><topic>SOLAR COLLECTORS</topic><topic>SOLAR ENERGY</topic><topic>SOLAR EQUIPMENT</topic><topic>solar furnace</topic><topic>SOLAR FURNACES</topic><topic>Solar thermal conversion</topic><topic>STORAGE</topic><topic>THERMOCHEMICAL HEAT STORAGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diver, R.B.</creatorcontrib><creatorcontrib>Fish, J.D.</creatorcontrib><creatorcontrib>Levitan, R.</creatorcontrib><creatorcontrib>Levy, M.</creatorcontrib><creatorcontrib>Meirovitch, E.</creatorcontrib><creatorcontrib>Rosin, H.</creatorcontrib><creatorcontrib>Paripatyadar, S.A.</creatorcontrib><creatorcontrib>Richardson, J.T.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diver, R.B.</au><au>Fish, J.D.</au><au>Levitan, R.</au><au>Levy, M.</au><au>Meirovitch, E.</au><au>Rosin, H.</au><au>Paripatyadar, S.A.</au><au>Richardson, J.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport</atitle><jtitle>Solar energy</jtitle><date>1992</date><risdate>1992</risdate><volume>48</volume><issue>1</issue><spage>21</spage><epage>30</epage><pages>21-30</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodium. The catalyst, 0.5 wt% Rh on alumina, filled two of the tubes with the front surface of the box serving as the solar absorber. In operation, concentrated sunlight heated the front plate and vaporized sodium from a wire mesh wick attached to the other side. Sodium vapor condensed on the reactor tubes, releasing latent heat and returning to the wick by gravity. The receiver system performed satisfactorily in many tests under varying flow conditions. The maximum power absorbed was 7.5 kW at temperatures above 800°C. The feasibility of operating a heat pipe receiver/reactor under solar conditions was proven, and the advantages of reflux devices confirmed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0038-092X(92)90173-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 1992, Vol.48 (1), p.21-30
issn 0038-092X
1471-1257
language eng
recordid cdi_osti_scitechconnect_5781050
source ScienceDirect Journals (5 years ago - present)
subjects 140505 - Solar Energy Conversion- Photochemical, Photobiological, & Thermochemical Conversion- (1980-)
ALKALI METALS
Applied sciences
CALENTAMIENTO
CALOR
CHALEUR
CHAUFFAGE
CHEMICAL REACTORS
Chemicals
ELEMENTS
ENERGIA SOLAR
ENERGIE SOLAIRE
Energy
ENERGY STORAGE
ENERGY TRANSFER
Equipments, installations and applications
EVACUATED COLLECTORS
Exact sciences and technology
FLUIDS
FURNACES
Gases
HEAT
HEAT PIPES
HEAT STORAGE
HEAT TRANSFER
HEAT TRANSFER FLUIDS
HEATING
ISRAEL
LATENT HEAT
METALS
Natural energy
SODIO
SODIUM
SOLAR ABSORBERS
SOLAR COLLECTORS
SOLAR ENERGY
SOLAR EQUIPMENT
solar furnace
SOLAR FURNACES
Solar thermal conversion
STORAGE
THERMOCHEMICAL HEAT STORAGE
title Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20test%20of%20an%20integrated%20sodium%20reflux%20heat%20pipe%20receiver/reactor%20for%20thermochemical%20energy%20transport&rft.jtitle=Solar%20energy&rft.au=Diver,%20R.B.&rft.date=1992&rft.volume=48&rft.issue=1&rft.spage=21&rft.epage=30&rft.pages=21-30&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/0038-092X(92)90173-8&rft_dat=%3Cproquest_osti_%3E3133063%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=231741627&rft_id=info:pmid/&rft_els_id=0038092X92901738&rfr_iscdi=true