Chromatographic separation and concentration of sulfur dioxide in flue gases
The ability to separate and concentrate SO[sub 2] from a gas stream similar to coal-derived flue gas is accomplished due to the relative adsorption strengths of SO[sub 2] and water on a synthetic mordenite, a phenomenon known as rollup. Laboratory experiments using both simulated and real flue gas a...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 1993-11, Vol.32 (11), p.2736-2739 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2739 |
---|---|
container_issue | 11 |
container_start_page | 2736 |
container_title | Industrial & engineering chemistry research |
container_volume | 32 |
creator | Stenger, Harvey G Hu, Kaihong Simpson, Dale R |
description | The ability to separate and concentrate SO[sub 2] from a gas stream similar to coal-derived flue gas is accomplished due to the relative adsorption strengths of SO[sub 2] and water on a synthetic mordenite, a phenomenon known as rollup. Laboratory experiments using both simulated and real flue gas are reported which demonstrate the potential of this process. The rollup effect is shown to be influenced by temperature, regeneration conditions, and the feed concentrations of water and SO[sub 2]. Adsorption at higher temperatures (150 vs 50 C) result in less desirable, smaller and broader rollup peaks. Air regeneration at 300 C was found to irreversibly decrease the rollup effect while regeneration with helium at temperatures above 200 C and with air at 150--200 C were found to be optimal. The influence of water was strong with the rollup peak being optimal with 7--8% moisture in the gas. Increasing the feed concentration of SO[sub 2] did not decrease the rollup effect, which implies the use of this phenomenon could be cascaded into a multistage process. |
doi_str_mv | 10.1021/ie00023a041 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5749206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f16668755</sourcerecordid><originalsourceid>FETCH-LOGICAL-a393t-2bb26598800075944c39428be7fcd5b7364621b2a1503e788d082f41fec60e323</originalsourceid><addsrcrecordid>eNpt0F1LwzAUBuAgCs7plX-giOCFVPPZppcy_MKBg83dhjRNtsyuKUkK89_b0TG88OpAzpPDywvANYIPCGL0aDWEEBMJKToBI8QwTBmk7BSMIOc8ZZyzc3ARwqZnjFE6AtPJ2rutjG7lZbu2Kgm6lV5G65pENlWiXKN0Ew8vziShq03nk8q6na10YpvE1J1OVjLocAnOjKyDvjrMMfh6eV5M3tLp5-v75GmaSlKQmOKyxBkrOO9T5KygVJGCYl7q3KiKlTnJaIZRiSVikOic8wpybCgyWmVQE0zG4Ga460K0IigbtVr3SRutomA5LTDMenQ_IOVdCF4b0Xq7lf5HICj2bYk_bfX6dtCtDErWxstG2XD8QjjMabY_mg7Mhqh3x7X03yLLSc7EYjYXs_nHktHlRCx7fzd4qYLYuM43fS__BvgFhhiEBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chromatographic separation and concentration of sulfur dioxide in flue gases</title><source>American Chemical Society Journals</source><creator>Stenger, Harvey G ; Hu, Kaihong ; Simpson, Dale R</creator><creatorcontrib>Stenger, Harvey G ; Hu, Kaihong ; Simpson, Dale R</creatorcontrib><description>The ability to separate and concentrate SO[sub 2] from a gas stream similar to coal-derived flue gas is accomplished due to the relative adsorption strengths of SO[sub 2] and water on a synthetic mordenite, a phenomenon known as rollup. Laboratory experiments using both simulated and real flue gas are reported which demonstrate the potential of this process. The rollup effect is shown to be influenced by temperature, regeneration conditions, and the feed concentrations of water and SO[sub 2]. Adsorption at higher temperatures (150 vs 50 C) result in less desirable, smaller and broader rollup peaks. Air regeneration at 300 C was found to irreversibly decrease the rollup effect while regeneration with helium at temperatures above 200 C and with air at 150--200 C were found to be optimal. The influence of water was strong with the rollup peak being optimal with 7--8% moisture in the gas. Increasing the feed concentration of SO[sub 2] did not decrease the rollup effect, which implies the use of this phenomenon could be cascaded into a multistage process.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie00023a041</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>01 COAL, LIGNITE, AND PEAT ; 010800 - Coal, Lignite, & Peat- Waste Management ; Applied sciences ; Atmospheric pollution ; CHALCOGENIDES ; CHEMICAL REACTIONS ; DESULFURIZATION ; Exact sciences and technology ; FLUE GAS ; GASEOUS WASTES ; HYDROGEN COMPOUNDS ; INORGANIC ION EXCHANGERS ; ION EXCHANGE MATERIALS ; MANAGEMENT ; MATERIALS ; MATERIALS RECOVERY ; MINERALS ; MORDENITE ; OXIDES ; OXYGEN COMPOUNDS ; Pollution ; Prevention and purification methods ; PROCESSING ; SILICATE MINERALS ; SORPTIVE PROPERTIES ; SULFUR COMPOUNDS ; SULFUR DIOXIDE ; SULFUR OXIDES ; SURFACE PROPERTIES ; TEMPERATURE DEPENDENCE ; TEMPERATURE RANGE ; TEMPERATURE RANGE 0273-0400 K ; TEMPERATURE RANGE 0400-1000 K ; Transports and other ; WASTE MANAGEMENT ; WASTE PROCESSING ; WASTES ; WATER ; ZEOLITES</subject><ispartof>Industrial & engineering chemistry research, 1993-11, Vol.32 (11), p.2736-2739</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a393t-2bb26598800075944c39428be7fcd5b7364621b2a1503e788d082f41fec60e323</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie00023a041$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie00023a041$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3807466$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5749206$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stenger, Harvey G</creatorcontrib><creatorcontrib>Hu, Kaihong</creatorcontrib><creatorcontrib>Simpson, Dale R</creatorcontrib><title>Chromatographic separation and concentration of sulfur dioxide in flue gases</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The ability to separate and concentrate SO[sub 2] from a gas stream similar to coal-derived flue gas is accomplished due to the relative adsorption strengths of SO[sub 2] and water on a synthetic mordenite, a phenomenon known as rollup. Laboratory experiments using both simulated and real flue gas are reported which demonstrate the potential of this process. The rollup effect is shown to be influenced by temperature, regeneration conditions, and the feed concentrations of water and SO[sub 2]. Adsorption at higher temperatures (150 vs 50 C) result in less desirable, smaller and broader rollup peaks. Air regeneration at 300 C was found to irreversibly decrease the rollup effect while regeneration with helium at temperatures above 200 C and with air at 150--200 C were found to be optimal. The influence of water was strong with the rollup peak being optimal with 7--8% moisture in the gas. Increasing the feed concentration of SO[sub 2] did not decrease the rollup effect, which implies the use of this phenomenon could be cascaded into a multistage process.</description><subject>01 COAL, LIGNITE, AND PEAT</subject><subject>010800 - Coal, Lignite, & Peat- Waste Management</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL REACTIONS</subject><subject>DESULFURIZATION</subject><subject>Exact sciences and technology</subject><subject>FLUE GAS</subject><subject>GASEOUS WASTES</subject><subject>HYDROGEN COMPOUNDS</subject><subject>INORGANIC ION EXCHANGERS</subject><subject>ION EXCHANGE MATERIALS</subject><subject>MANAGEMENT</subject><subject>MATERIALS</subject><subject>MATERIALS RECOVERY</subject><subject>MINERALS</subject><subject>MORDENITE</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>Pollution</subject><subject>Prevention and purification methods</subject><subject>PROCESSING</subject><subject>SILICATE MINERALS</subject><subject>SORPTIVE PROPERTIES</subject><subject>SULFUR COMPOUNDS</subject><subject>SULFUR DIOXIDE</subject><subject>SULFUR OXIDES</subject><subject>SURFACE PROPERTIES</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TEMPERATURE RANGE</subject><subject>TEMPERATURE RANGE 0273-0400 K</subject><subject>TEMPERATURE RANGE 0400-1000 K</subject><subject>Transports and other</subject><subject>WASTE MANAGEMENT</subject><subject>WASTE PROCESSING</subject><subject>WASTES</subject><subject>WATER</subject><subject>ZEOLITES</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNpt0F1LwzAUBuAgCs7plX-giOCFVPPZppcy_MKBg83dhjRNtsyuKUkK89_b0TG88OpAzpPDywvANYIPCGL0aDWEEBMJKToBI8QwTBmk7BSMIOc8ZZyzc3ARwqZnjFE6AtPJ2rutjG7lZbu2Kgm6lV5G65pENlWiXKN0Ew8vziShq03nk8q6na10YpvE1J1OVjLocAnOjKyDvjrMMfh6eV5M3tLp5-v75GmaSlKQmOKyxBkrOO9T5KygVJGCYl7q3KiKlTnJaIZRiSVikOic8wpybCgyWmVQE0zG4Ga460K0IigbtVr3SRutomA5LTDMenQ_IOVdCF4b0Xq7lf5HICj2bYk_bfX6dtCtDErWxstG2XD8QjjMabY_mg7Mhqh3x7X03yLLSc7EYjYXs_nHktHlRCx7fzd4qYLYuM43fS__BvgFhhiEBA</recordid><startdate>19931101</startdate><enddate>19931101</enddate><creator>Stenger, Harvey G</creator><creator>Hu, Kaihong</creator><creator>Simpson, Dale R</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19931101</creationdate><title>Chromatographic separation and concentration of sulfur dioxide in flue gases</title><author>Stenger, Harvey G ; Hu, Kaihong ; Simpson, Dale R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a393t-2bb26598800075944c39428be7fcd5b7364621b2a1503e788d082f41fec60e323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>01 COAL, LIGNITE, AND PEAT</topic><topic>010800 - Coal, Lignite, & Peat- Waste Management</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL REACTIONS</topic><topic>DESULFURIZATION</topic><topic>Exact sciences and technology</topic><topic>FLUE GAS</topic><topic>GASEOUS WASTES</topic><topic>HYDROGEN COMPOUNDS</topic><topic>INORGANIC ION EXCHANGERS</topic><topic>ION EXCHANGE MATERIALS</topic><topic>MANAGEMENT</topic><topic>MATERIALS</topic><topic>MATERIALS RECOVERY</topic><topic>MINERALS</topic><topic>MORDENITE</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>Pollution</topic><topic>Prevention and purification methods</topic><topic>PROCESSING</topic><topic>SILICATE MINERALS</topic><topic>SORPTIVE PROPERTIES</topic><topic>SULFUR COMPOUNDS</topic><topic>SULFUR DIOXIDE</topic><topic>SULFUR OXIDES</topic><topic>SURFACE PROPERTIES</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TEMPERATURE RANGE</topic><topic>TEMPERATURE RANGE 0273-0400 K</topic><topic>TEMPERATURE RANGE 0400-1000 K</topic><topic>Transports and other</topic><topic>WASTE MANAGEMENT</topic><topic>WASTE PROCESSING</topic><topic>WASTES</topic><topic>WATER</topic><topic>ZEOLITES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stenger, Harvey G</creatorcontrib><creatorcontrib>Hu, Kaihong</creatorcontrib><creatorcontrib>Simpson, Dale R</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stenger, Harvey G</au><au>Hu, Kaihong</au><au>Simpson, Dale R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatographic separation and concentration of sulfur dioxide in flue gases</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1993-11-01</date><risdate>1993</risdate><volume>32</volume><issue>11</issue><spage>2736</spage><epage>2739</epage><pages>2736-2739</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>The ability to separate and concentrate SO[sub 2] from a gas stream similar to coal-derived flue gas is accomplished due to the relative adsorption strengths of SO[sub 2] and water on a synthetic mordenite, a phenomenon known as rollup. Laboratory experiments using both simulated and real flue gas are reported which demonstrate the potential of this process. The rollup effect is shown to be influenced by temperature, regeneration conditions, and the feed concentrations of water and SO[sub 2]. Adsorption at higher temperatures (150 vs 50 C) result in less desirable, smaller and broader rollup peaks. Air regeneration at 300 C was found to irreversibly decrease the rollup effect while regeneration with helium at temperatures above 200 C and with air at 150--200 C were found to be optimal. The influence of water was strong with the rollup peak being optimal with 7--8% moisture in the gas. Increasing the feed concentration of SO[sub 2] did not decrease the rollup effect, which implies the use of this phenomenon could be cascaded into a multistage process.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie00023a041</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 1993-11, Vol.32 (11), p.2736-2739 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_osti_scitechconnect_5749206 |
source | American Chemical Society Journals |
subjects | 01 COAL, LIGNITE, AND PEAT 010800 - Coal, Lignite, & Peat- Waste Management Applied sciences Atmospheric pollution CHALCOGENIDES CHEMICAL REACTIONS DESULFURIZATION Exact sciences and technology FLUE GAS GASEOUS WASTES HYDROGEN COMPOUNDS INORGANIC ION EXCHANGERS ION EXCHANGE MATERIALS MANAGEMENT MATERIALS MATERIALS RECOVERY MINERALS MORDENITE OXIDES OXYGEN COMPOUNDS Pollution Prevention and purification methods PROCESSING SILICATE MINERALS SORPTIVE PROPERTIES SULFUR COMPOUNDS SULFUR DIOXIDE SULFUR OXIDES SURFACE PROPERTIES TEMPERATURE DEPENDENCE TEMPERATURE RANGE TEMPERATURE RANGE 0273-0400 K TEMPERATURE RANGE 0400-1000 K Transports and other WASTE MANAGEMENT WASTE PROCESSING WASTES WATER ZEOLITES |
title | Chromatographic separation and concentration of sulfur dioxide in flue gases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatographic%20separation%20and%20concentration%20of%20sulfur%20dioxide%20in%20flue%20gases&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Stenger,%20Harvey%20G&rft.date=1993-11-01&rft.volume=32&rft.issue=11&rft.spage=2736&rft.epage=2739&rft.pages=2736-2739&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie00023a041&rft_dat=%3Cacs_osti_%3Ef16668755%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |