Chromatographic separation and concentration of sulfur dioxide in flue gases

The ability to separate and concentrate SO[sub 2] from a gas stream similar to coal-derived flue gas is accomplished due to the relative adsorption strengths of SO[sub 2] and water on a synthetic mordenite, a phenomenon known as rollup. Laboratory experiments using both simulated and real flue gas a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 1993-11, Vol.32 (11), p.2736-2739
Hauptverfasser: Stenger, Harvey G, Hu, Kaihong, Simpson, Dale R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2739
container_issue 11
container_start_page 2736
container_title Industrial & engineering chemistry research
container_volume 32
creator Stenger, Harvey G
Hu, Kaihong
Simpson, Dale R
description The ability to separate and concentrate SO[sub 2] from a gas stream similar to coal-derived flue gas is accomplished due to the relative adsorption strengths of SO[sub 2] and water on a synthetic mordenite, a phenomenon known as rollup. Laboratory experiments using both simulated and real flue gas are reported which demonstrate the potential of this process. The rollup effect is shown to be influenced by temperature, regeneration conditions, and the feed concentrations of water and SO[sub 2]. Adsorption at higher temperatures (150 vs 50 C) result in less desirable, smaller and broader rollup peaks. Air regeneration at 300 C was found to irreversibly decrease the rollup effect while regeneration with helium at temperatures above 200 C and with air at 150--200 C were found to be optimal. The influence of water was strong with the rollup peak being optimal with 7--8% moisture in the gas. Increasing the feed concentration of SO[sub 2] did not decrease the rollup effect, which implies the use of this phenomenon could be cascaded into a multistage process.
doi_str_mv 10.1021/ie00023a041
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5749206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f16668755</sourcerecordid><originalsourceid>FETCH-LOGICAL-a393t-2bb26598800075944c39428be7fcd5b7364621b2a1503e788d082f41fec60e323</originalsourceid><addsrcrecordid>eNpt0F1LwzAUBuAgCs7plX-giOCFVPPZppcy_MKBg83dhjRNtsyuKUkK89_b0TG88OpAzpPDywvANYIPCGL0aDWEEBMJKToBI8QwTBmk7BSMIOc8ZZyzc3ARwqZnjFE6AtPJ2rutjG7lZbu2Kgm6lV5G65pENlWiXKN0Ew8vziShq03nk8q6na10YpvE1J1OVjLocAnOjKyDvjrMMfh6eV5M3tLp5-v75GmaSlKQmOKyxBkrOO9T5KygVJGCYl7q3KiKlTnJaIZRiSVikOic8wpybCgyWmVQE0zG4Ga460K0IigbtVr3SRutomA5LTDMenQ_IOVdCF4b0Xq7lf5HICj2bYk_bfX6dtCtDErWxstG2XD8QjjMabY_mg7Mhqh3x7X03yLLSc7EYjYXs_nHktHlRCx7fzd4qYLYuM43fS__BvgFhhiEBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chromatographic separation and concentration of sulfur dioxide in flue gases</title><source>American Chemical Society Journals</source><creator>Stenger, Harvey G ; Hu, Kaihong ; Simpson, Dale R</creator><creatorcontrib>Stenger, Harvey G ; Hu, Kaihong ; Simpson, Dale R</creatorcontrib><description>The ability to separate and concentrate SO[sub 2] from a gas stream similar to coal-derived flue gas is accomplished due to the relative adsorption strengths of SO[sub 2] and water on a synthetic mordenite, a phenomenon known as rollup. Laboratory experiments using both simulated and real flue gas are reported which demonstrate the potential of this process. The rollup effect is shown to be influenced by temperature, regeneration conditions, and the feed concentrations of water and SO[sub 2]. Adsorption at higher temperatures (150 vs 50 C) result in less desirable, smaller and broader rollup peaks. Air regeneration at 300 C was found to irreversibly decrease the rollup effect while regeneration with helium at temperatures above 200 C and with air at 150--200 C were found to be optimal. The influence of water was strong with the rollup peak being optimal with 7--8% moisture in the gas. Increasing the feed concentration of SO[sub 2] did not decrease the rollup effect, which implies the use of this phenomenon could be cascaded into a multistage process.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie00023a041</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>01 COAL, LIGNITE, AND PEAT ; 010800 - Coal, Lignite, &amp; Peat- Waste Management ; Applied sciences ; Atmospheric pollution ; CHALCOGENIDES ; CHEMICAL REACTIONS ; DESULFURIZATION ; Exact sciences and technology ; FLUE GAS ; GASEOUS WASTES ; HYDROGEN COMPOUNDS ; INORGANIC ION EXCHANGERS ; ION EXCHANGE MATERIALS ; MANAGEMENT ; MATERIALS ; MATERIALS RECOVERY ; MINERALS ; MORDENITE ; OXIDES ; OXYGEN COMPOUNDS ; Pollution ; Prevention and purification methods ; PROCESSING ; SILICATE MINERALS ; SORPTIVE PROPERTIES ; SULFUR COMPOUNDS ; SULFUR DIOXIDE ; SULFUR OXIDES ; SURFACE PROPERTIES ; TEMPERATURE DEPENDENCE ; TEMPERATURE RANGE ; TEMPERATURE RANGE 0273-0400 K ; TEMPERATURE RANGE 0400-1000 K ; Transports and other ; WASTE MANAGEMENT ; WASTE PROCESSING ; WASTES ; WATER ; ZEOLITES</subject><ispartof>Industrial &amp; engineering chemistry research, 1993-11, Vol.32 (11), p.2736-2739</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a393t-2bb26598800075944c39428be7fcd5b7364621b2a1503e788d082f41fec60e323</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie00023a041$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie00023a041$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3807466$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5749206$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stenger, Harvey G</creatorcontrib><creatorcontrib>Hu, Kaihong</creatorcontrib><creatorcontrib>Simpson, Dale R</creatorcontrib><title>Chromatographic separation and concentration of sulfur dioxide in flue gases</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The ability to separate and concentrate SO[sub 2] from a gas stream similar to coal-derived flue gas is accomplished due to the relative adsorption strengths of SO[sub 2] and water on a synthetic mordenite, a phenomenon known as rollup. Laboratory experiments using both simulated and real flue gas are reported which demonstrate the potential of this process. The rollup effect is shown to be influenced by temperature, regeneration conditions, and the feed concentrations of water and SO[sub 2]. Adsorption at higher temperatures (150 vs 50 C) result in less desirable, smaller and broader rollup peaks. Air regeneration at 300 C was found to irreversibly decrease the rollup effect while regeneration with helium at temperatures above 200 C and with air at 150--200 C were found to be optimal. The influence of water was strong with the rollup peak being optimal with 7--8% moisture in the gas. Increasing the feed concentration of SO[sub 2] did not decrease the rollup effect, which implies the use of this phenomenon could be cascaded into a multistage process.</description><subject>01 COAL, LIGNITE, AND PEAT</subject><subject>010800 - Coal, Lignite, &amp; Peat- Waste Management</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL REACTIONS</subject><subject>DESULFURIZATION</subject><subject>Exact sciences and technology</subject><subject>FLUE GAS</subject><subject>GASEOUS WASTES</subject><subject>HYDROGEN COMPOUNDS</subject><subject>INORGANIC ION EXCHANGERS</subject><subject>ION EXCHANGE MATERIALS</subject><subject>MANAGEMENT</subject><subject>MATERIALS</subject><subject>MATERIALS RECOVERY</subject><subject>MINERALS</subject><subject>MORDENITE</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>Pollution</subject><subject>Prevention and purification methods</subject><subject>PROCESSING</subject><subject>SILICATE MINERALS</subject><subject>SORPTIVE PROPERTIES</subject><subject>SULFUR COMPOUNDS</subject><subject>SULFUR DIOXIDE</subject><subject>SULFUR OXIDES</subject><subject>SURFACE PROPERTIES</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TEMPERATURE RANGE</subject><subject>TEMPERATURE RANGE 0273-0400 K</subject><subject>TEMPERATURE RANGE 0400-1000 K</subject><subject>Transports and other</subject><subject>WASTE MANAGEMENT</subject><subject>WASTE PROCESSING</subject><subject>WASTES</subject><subject>WATER</subject><subject>ZEOLITES</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNpt0F1LwzAUBuAgCs7plX-giOCFVPPZppcy_MKBg83dhjRNtsyuKUkK89_b0TG88OpAzpPDywvANYIPCGL0aDWEEBMJKToBI8QwTBmk7BSMIOc8ZZyzc3ARwqZnjFE6AtPJ2rutjG7lZbu2Kgm6lV5G65pENlWiXKN0Ew8vziShq03nk8q6na10YpvE1J1OVjLocAnOjKyDvjrMMfh6eV5M3tLp5-v75GmaSlKQmOKyxBkrOO9T5KygVJGCYl7q3KiKlTnJaIZRiSVikOic8wpybCgyWmVQE0zG4Ga460K0IigbtVr3SRutomA5LTDMenQ_IOVdCF4b0Xq7lf5HICj2bYk_bfX6dtCtDErWxstG2XD8QjjMabY_mg7Mhqh3x7X03yLLSc7EYjYXs_nHktHlRCx7fzd4qYLYuM43fS__BvgFhhiEBA</recordid><startdate>19931101</startdate><enddate>19931101</enddate><creator>Stenger, Harvey G</creator><creator>Hu, Kaihong</creator><creator>Simpson, Dale R</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19931101</creationdate><title>Chromatographic separation and concentration of sulfur dioxide in flue gases</title><author>Stenger, Harvey G ; Hu, Kaihong ; Simpson, Dale R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a393t-2bb26598800075944c39428be7fcd5b7364621b2a1503e788d082f41fec60e323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>01 COAL, LIGNITE, AND PEAT</topic><topic>010800 - Coal, Lignite, &amp; Peat- Waste Management</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL REACTIONS</topic><topic>DESULFURIZATION</topic><topic>Exact sciences and technology</topic><topic>FLUE GAS</topic><topic>GASEOUS WASTES</topic><topic>HYDROGEN COMPOUNDS</topic><topic>INORGANIC ION EXCHANGERS</topic><topic>ION EXCHANGE MATERIALS</topic><topic>MANAGEMENT</topic><topic>MATERIALS</topic><topic>MATERIALS RECOVERY</topic><topic>MINERALS</topic><topic>MORDENITE</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>Pollution</topic><topic>Prevention and purification methods</topic><topic>PROCESSING</topic><topic>SILICATE MINERALS</topic><topic>SORPTIVE PROPERTIES</topic><topic>SULFUR COMPOUNDS</topic><topic>SULFUR DIOXIDE</topic><topic>SULFUR OXIDES</topic><topic>SURFACE PROPERTIES</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TEMPERATURE RANGE</topic><topic>TEMPERATURE RANGE 0273-0400 K</topic><topic>TEMPERATURE RANGE 0400-1000 K</topic><topic>Transports and other</topic><topic>WASTE MANAGEMENT</topic><topic>WASTE PROCESSING</topic><topic>WASTES</topic><topic>WATER</topic><topic>ZEOLITES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stenger, Harvey G</creatorcontrib><creatorcontrib>Hu, Kaihong</creatorcontrib><creatorcontrib>Simpson, Dale R</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stenger, Harvey G</au><au>Hu, Kaihong</au><au>Simpson, Dale R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatographic separation and concentration of sulfur dioxide in flue gases</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>1993-11-01</date><risdate>1993</risdate><volume>32</volume><issue>11</issue><spage>2736</spage><epage>2739</epage><pages>2736-2739</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>The ability to separate and concentrate SO[sub 2] from a gas stream similar to coal-derived flue gas is accomplished due to the relative adsorption strengths of SO[sub 2] and water on a synthetic mordenite, a phenomenon known as rollup. Laboratory experiments using both simulated and real flue gas are reported which demonstrate the potential of this process. The rollup effect is shown to be influenced by temperature, regeneration conditions, and the feed concentrations of water and SO[sub 2]. Adsorption at higher temperatures (150 vs 50 C) result in less desirable, smaller and broader rollup peaks. Air regeneration at 300 C was found to irreversibly decrease the rollup effect while regeneration with helium at temperatures above 200 C and with air at 150--200 C were found to be optimal. The influence of water was strong with the rollup peak being optimal with 7--8% moisture in the gas. Increasing the feed concentration of SO[sub 2] did not decrease the rollup effect, which implies the use of this phenomenon could be cascaded into a multistage process.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie00023a041</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 1993-11, Vol.32 (11), p.2736-2739
issn 0888-5885
1520-5045
language eng
recordid cdi_osti_scitechconnect_5749206
source American Chemical Society Journals
subjects 01 COAL, LIGNITE, AND PEAT
010800 - Coal, Lignite, & Peat- Waste Management
Applied sciences
Atmospheric pollution
CHALCOGENIDES
CHEMICAL REACTIONS
DESULFURIZATION
Exact sciences and technology
FLUE GAS
GASEOUS WASTES
HYDROGEN COMPOUNDS
INORGANIC ION EXCHANGERS
ION EXCHANGE MATERIALS
MANAGEMENT
MATERIALS
MATERIALS RECOVERY
MINERALS
MORDENITE
OXIDES
OXYGEN COMPOUNDS
Pollution
Prevention and purification methods
PROCESSING
SILICATE MINERALS
SORPTIVE PROPERTIES
SULFUR COMPOUNDS
SULFUR DIOXIDE
SULFUR OXIDES
SURFACE PROPERTIES
TEMPERATURE DEPENDENCE
TEMPERATURE RANGE
TEMPERATURE RANGE 0273-0400 K
TEMPERATURE RANGE 0400-1000 K
Transports and other
WASTE MANAGEMENT
WASTE PROCESSING
WASTES
WATER
ZEOLITES
title Chromatographic separation and concentration of sulfur dioxide in flue gases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatographic%20separation%20and%20concentration%20of%20sulfur%20dioxide%20in%20flue%20gases&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Stenger,%20Harvey%20G&rft.date=1993-11-01&rft.volume=32&rft.issue=11&rft.spage=2736&rft.epage=2739&rft.pages=2736-2739&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie00023a041&rft_dat=%3Cacs_osti_%3Ef16668755%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true