On the Fast Multipole Method for Computing the Energy of Periodic Assemblies of Charged and Dipolar Particles

In two dimensions, it is convenient to represent the coordinates (x, y) of particles as complex numbers z = x + iy. The energy of interaction of two point charges q[sub 1] and q [sub 2] at points represented by the complex numbers z[sub 1] and z[sub 2] is then since the natural logarithm is the sing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1993-08, Vol.107 (2), p.403-405
Hauptverfasser: Christiansen, Dorthe, Perram, John W., Petersen, Henrik G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 405
container_issue 2
container_start_page 403
container_title Journal of computational physics
container_volume 107
creator Christiansen, Dorthe
Perram, John W.
Petersen, Henrik G.
description In two dimensions, it is convenient to represent the coordinates (x, y) of particles as complex numbers z = x + iy. The energy of interaction of two point charges q[sub 1] and q [sub 2] at points represented by the complex numbers z[sub 1] and z[sub 2] is then since the natural logarithm is the singular part of the Greens function for the two-dimensional Laplace equation. In performing molecular dynamics and Monte Carlo simulations of neutral systems of charged particles or of point dipoles, it is necessary to compute the energies and forces of an infinite periodic system in which the N charges or dipoles at the points z[sub 1] ... z[sub n] resident in the primary (usually square) simulation cell are replicated everywhere in the plane.
doi_str_mv 10.1006/jcph.1993.1154
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5633711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199918371154X</els_id><sourcerecordid>S002199918371154X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-2da4883ece39da710749df73918ce7964b7642b1e2c30b44752d0fc3d140639c3</originalsourceid><addsrcrecordid>eNp1kLtPwzAQhy0EEuWxMluINcUXu0k8olIeUisYYI7c86UxSuPIdpH472koYmM66fT97vExdgViCkIUtx84tFPQWk4BZuqITUBokeUlFMdsIkQOmdYaTtlZjB9CiGqmqgnbvvQ8tcQfTEx8teuSG3xHfEWp9ZY3PvC53w675PrND7foKWy-uG_4KwXnrUN-FyNt152jOLbnrQkbstz0lt-Pw0zgryYkhx3FC3bSmC7S5W89Z-8Pi7f5U7Z8eXye3y0zlCpPWW6NqipJSFJbU4IolbZNKTVUSKUu1LosVL4GylGKtVLlLLeiQWlBiUJqlOfs-jDXx-TqiC4Rtuj7njDVs0LKEmAPTQ8QBh9joKYegtua8FWDqEej9Wi0Ho3Wo9F94OYQGExE0zXB9OjiX0rBj9Q9Vh0w2n_46SiMB1CPZF0Y91vv_tvwDU-uiRE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Fast Multipole Method for Computing the Energy of Periodic Assemblies of Charged and Dipolar Particles</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Christiansen, Dorthe ; Perram, John W. ; Petersen, Henrik G.</creator><creatorcontrib>Christiansen, Dorthe ; Perram, John W. ; Petersen, Henrik G.</creatorcontrib><description>In two dimensions, it is convenient to represent the coordinates (x, y) of particles as complex numbers z = x + iy. The energy of interaction of two point charges q[sub 1] and q [sub 2] at points represented by the complex numbers z[sub 1] and z[sub 2] is then since the natural logarithm is the singular part of the Greens function for the two-dimensional Laplace equation. In performing molecular dynamics and Monte Carlo simulations of neutral systems of charged particles or of point dipoles, it is necessary to compute the energies and forces of an infinite periodic system in which the N charges or dipoles at the points z[sub 1] ... z[sub n] resident in the primary (usually square) simulation cell are replicated everywhere in the plane.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1006/jcph.1993.1154</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>990200 -- Mathematics &amp; Computers ; Algorithms for functional approximation ; Applied classical electromagnetism ; CALCULATION METHODS ; CHARGED PARTICLES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computational techniques ; COMPUTERIZED SIMULATION ; DIFFERENTIAL EQUATIONS ; Electromagnetism; electron and ion optics ; Electrostatics. Poisson and laplace equations, boundary-value problems ; EQUATIONS ; Exact sciences and technology ; FUNCTIONS ; Fundamental areas of phenomenology (including applications) ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; GREEN FUNCTION ; ITERATIVE METHODS ; LAPLACE EQUATION ; Mathematical methods in physics ; Molecular dynamics and particle methods ; MONTE CARLO METHOD ; Numerical approximation and analysis ; NUMERICAL SOLUTION ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; SIMULATION 661300 -- Other Aspects of Physical Science-- (1992-)</subject><ispartof>Journal of computational physics, 1993-08, Vol.107 (2), p.403-405</ispartof><rights>1993 Academic Press</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-2da4883ece39da710749df73918ce7964b7642b1e2c30b44752d0fc3d140639c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jcph.1993.1154$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4100854$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5633711$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Christiansen, Dorthe</creatorcontrib><creatorcontrib>Perram, John W.</creatorcontrib><creatorcontrib>Petersen, Henrik G.</creatorcontrib><title>On the Fast Multipole Method for Computing the Energy of Periodic Assemblies of Charged and Dipolar Particles</title><title>Journal of computational physics</title><description>In two dimensions, it is convenient to represent the coordinates (x, y) of particles as complex numbers z = x + iy. The energy of interaction of two point charges q[sub 1] and q [sub 2] at points represented by the complex numbers z[sub 1] and z[sub 2] is then since the natural logarithm is the singular part of the Greens function for the two-dimensional Laplace equation. In performing molecular dynamics and Monte Carlo simulations of neutral systems of charged particles or of point dipoles, it is necessary to compute the energies and forces of an infinite periodic system in which the N charges or dipoles at the points z[sub 1] ... z[sub n] resident in the primary (usually square) simulation cell are replicated everywhere in the plane.</description><subject>990200 -- Mathematics &amp; Computers</subject><subject>Algorithms for functional approximation</subject><subject>Applied classical electromagnetism</subject><subject>CALCULATION METHODS</subject><subject>CHARGED PARTICLES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computational techniques</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Electrostatics. Poisson and laplace equations, boundary-value problems</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FUNCTIONS</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>GREEN FUNCTION</subject><subject>ITERATIVE METHODS</subject><subject>LAPLACE EQUATION</subject><subject>Mathematical methods in physics</subject><subject>Molecular dynamics and particle methods</subject><subject>MONTE CARLO METHOD</subject><subject>Numerical approximation and analysis</subject><subject>NUMERICAL SOLUTION</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>SIMULATION 661300 -- Other Aspects of Physical Science-- (1992-)</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kLtPwzAQhy0EEuWxMluINcUXu0k8olIeUisYYI7c86UxSuPIdpH472koYmM66fT97vExdgViCkIUtx84tFPQWk4BZuqITUBokeUlFMdsIkQOmdYaTtlZjB9CiGqmqgnbvvQ8tcQfTEx8teuSG3xHfEWp9ZY3PvC53w675PrND7foKWy-uG_4KwXnrUN-FyNt152jOLbnrQkbstz0lt-Pw0zgryYkhx3FC3bSmC7S5W89Z-8Pi7f5U7Z8eXye3y0zlCpPWW6NqipJSFJbU4IolbZNKTVUSKUu1LosVL4GylGKtVLlLLeiQWlBiUJqlOfs-jDXx-TqiC4Rtuj7njDVs0LKEmAPTQ8QBh9joKYegtua8FWDqEej9Wi0Ho3Wo9F94OYQGExE0zXB9OjiX0rBj9Q9Vh0w2n_46SiMB1CPZF0Y91vv_tvwDU-uiRE</recordid><startdate>19930801</startdate><enddate>19930801</enddate><creator>Christiansen, Dorthe</creator><creator>Perram, John W.</creator><creator>Petersen, Henrik G.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19930801</creationdate><title>On the Fast Multipole Method for Computing the Energy of Periodic Assemblies of Charged and Dipolar Particles</title><author>Christiansen, Dorthe ; Perram, John W. ; Petersen, Henrik G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-2da4883ece39da710749df73918ce7964b7642b1e2c30b44752d0fc3d140639c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>990200 -- Mathematics &amp; Computers</topic><topic>Algorithms for functional approximation</topic><topic>Applied classical electromagnetism</topic><topic>CALCULATION METHODS</topic><topic>CHARGED PARTICLES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computational techniques</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Electrostatics. Poisson and laplace equations, boundary-value problems</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FUNCTIONS</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>GREEN FUNCTION</topic><topic>ITERATIVE METHODS</topic><topic>LAPLACE EQUATION</topic><topic>Mathematical methods in physics</topic><topic>Molecular dynamics and particle methods</topic><topic>MONTE CARLO METHOD</topic><topic>Numerical approximation and analysis</topic><topic>NUMERICAL SOLUTION</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>SIMULATION 661300 -- Other Aspects of Physical Science-- (1992-)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christiansen, Dorthe</creatorcontrib><creatorcontrib>Perram, John W.</creatorcontrib><creatorcontrib>Petersen, Henrik G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christiansen, Dorthe</au><au>Perram, John W.</au><au>Petersen, Henrik G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Fast Multipole Method for Computing the Energy of Periodic Assemblies of Charged and Dipolar Particles</atitle><jtitle>Journal of computational physics</jtitle><date>1993-08-01</date><risdate>1993</risdate><volume>107</volume><issue>2</issue><spage>403</spage><epage>405</epage><pages>403-405</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In two dimensions, it is convenient to represent the coordinates (x, y) of particles as complex numbers z = x + iy. The energy of interaction of two point charges q[sub 1] and q [sub 2] at points represented by the complex numbers z[sub 1] and z[sub 2] is then since the natural logarithm is the singular part of the Greens function for the two-dimensional Laplace equation. In performing molecular dynamics and Monte Carlo simulations of neutral systems of charged particles or of point dipoles, it is necessary to compute the energies and forces of an infinite periodic system in which the N charges or dipoles at the points z[sub 1] ... z[sub n] resident in the primary (usually square) simulation cell are replicated everywhere in the plane.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1006/jcph.1993.1154</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1993-08, Vol.107 (2), p.403-405
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_5633711
source Elsevier ScienceDirect Journals Complete
subjects 990200 -- Mathematics & Computers
Algorithms for functional approximation
Applied classical electromagnetism
CALCULATION METHODS
CHARGED PARTICLES
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computational techniques
COMPUTERIZED SIMULATION
DIFFERENTIAL EQUATIONS
Electromagnetism
electron and ion optics
Electrostatics. Poisson and laplace equations, boundary-value problems
EQUATIONS
Exact sciences and technology
FUNCTIONS
Fundamental areas of phenomenology (including applications)
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
GREEN FUNCTION
ITERATIVE METHODS
LAPLACE EQUATION
Mathematical methods in physics
Molecular dynamics and particle methods
MONTE CARLO METHOD
Numerical approximation and analysis
NUMERICAL SOLUTION
PARTIAL DIFFERENTIAL EQUATIONS
Physics
SIMULATION 661300 -- Other Aspects of Physical Science-- (1992-)
title On the Fast Multipole Method for Computing the Energy of Periodic Assemblies of Charged and Dipolar Particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Fast%20Multipole%20Method%20for%20Computing%20the%20Energy%20of%20Periodic%20Assemblies%20of%20Charged%20and%20Dipolar%20Particles&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Christiansen,%20Dorthe&rft.date=1993-08-01&rft.volume=107&rft.issue=2&rft.spage=403&rft.epage=405&rft.pages=403-405&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1006/jcph.1993.1154&rft_dat=%3Celsevier_osti_%3ES002199918371154X%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S002199918371154X&rfr_iscdi=true