Spatial domain decomposition for Neutron transport problems

A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport theory and statistical physics 1989-04, Vol.18 (2), p.205-219
Hauptverfasser: Yavuz, Musa, Larsen, Edward W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 2
container_start_page 205
container_title Transport theory and statistical physics
container_volume 18
creator Yavuz, Musa
Larsen, Edward W.
description A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness).
doi_str_mv 10.1080/00411458908204321
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5590314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00411458908204321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-b0dfb05783ad039d91f73cdc02c3e784207fb02386fb0acec307faec1afd8e7e3</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKLguvoDvBXv1ZeP2hS9yOKqsOhBPYf0JcFI25QkIvvvzbLexNMMb2YezBByTuGSgoQrAEGpaGQHkoHgjB6QBW04q5lg4pAsdnpdDHBMTlL6BKCSCrEgN6-zzl4PlQmj9lNlLIZxDslnH6bKhVg9268cC89RT2kOMVdzDP1gx3RKjpwekj37xSV5X9-_rR7rzcvD0-puUyMTkOsejOuhaSXXBnhnOupajgaBIbetFAzaojMurwtotMjLQVuk2hlpW8uX5GL_N6TsVUKfLX5gmCaLWTVNB5yKYqJ7E8aQUrROzdGPOm4VBbWbSP2ZqGRu9xk_laaj_g5xMCrr7RCiK3XRJ8X_j_8AFcNsbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatial domain decomposition for Neutron transport problems</title><source>Taylor &amp; Francis</source><creator>Yavuz, Musa ; Larsen, Edward W.</creator><creatorcontrib>Yavuz, Musa ; Larsen, Edward W.</creatorcontrib><description>A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness).</description><identifier>ISSN: 0041-1450</identifier><identifier>EISSN: 1532-2424</identifier><identifier>DOI: 10.1080/00411458908204321</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis Group</publisher><subject>654003 - Radiation &amp; Shielding Physics- Neutron Interactions with Matter ; ALGORITHMS ; COMPUTER CALCULATIONS ; DISCRETE ORDINATE METHOD ; ITERATIVE METHODS ; MATHEMATICAL LOGIC ; NEUTRON TRANSPORT THEORY ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; TRANSPORT THEORY</subject><ispartof>Transport theory and statistical physics, 1989-04, Vol.18 (2), p.205-219</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1989</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c240t-b0dfb05783ad039d91f73cdc02c3e784207fb02386fb0acec307faec1afd8e7e3</citedby><cites>FETCH-LOGICAL-c240t-b0dfb05783ad039d91f73cdc02c3e784207fb02386fb0acec307faec1afd8e7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00411458908204321$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00411458908204321$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,59626,60415</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5590314$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yavuz, Musa</creatorcontrib><creatorcontrib>Larsen, Edward W.</creatorcontrib><title>Spatial domain decomposition for Neutron transport problems</title><title>Transport theory and statistical physics</title><description>A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness).</description><subject>654003 - Radiation &amp; Shielding Physics- Neutron Interactions with Matter</subject><subject>ALGORITHMS</subject><subject>COMPUTER CALCULATIONS</subject><subject>DISCRETE ORDINATE METHOD</subject><subject>ITERATIVE METHODS</subject><subject>MATHEMATICAL LOGIC</subject><subject>NEUTRON TRANSPORT THEORY</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>TRANSPORT THEORY</subject><issn>0041-1450</issn><issn>1532-2424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAUDKLguvoDvBXv1ZeP2hS9yOKqsOhBPYf0JcFI25QkIvvvzbLexNMMb2YezBByTuGSgoQrAEGpaGQHkoHgjB6QBW04q5lg4pAsdnpdDHBMTlL6BKCSCrEgN6-zzl4PlQmj9lNlLIZxDslnH6bKhVg9268cC89RT2kOMVdzDP1gx3RKjpwekj37xSV5X9-_rR7rzcvD0-puUyMTkOsejOuhaSXXBnhnOupajgaBIbetFAzaojMurwtotMjLQVuk2hlpW8uX5GL_N6TsVUKfLX5gmCaLWTVNB5yKYqJ7E8aQUrROzdGPOm4VBbWbSP2ZqGRu9xk_laaj_g5xMCrr7RCiK3XRJ8X_j_8AFcNsbg</recordid><startdate>19890401</startdate><enddate>19890401</enddate><creator>Yavuz, Musa</creator><creator>Larsen, Edward W.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19890401</creationdate><title>Spatial domain decomposition for Neutron transport problems</title><author>Yavuz, Musa ; Larsen, Edward W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-b0dfb05783ad039d91f73cdc02c3e784207fb02386fb0acec307faec1afd8e7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>654003 - Radiation &amp; Shielding Physics- Neutron Interactions with Matter</topic><topic>ALGORITHMS</topic><topic>COMPUTER CALCULATIONS</topic><topic>DISCRETE ORDINATE METHOD</topic><topic>ITERATIVE METHODS</topic><topic>MATHEMATICAL LOGIC</topic><topic>NEUTRON TRANSPORT THEORY</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>TRANSPORT THEORY</topic><toplevel>online_resources</toplevel><creatorcontrib>Yavuz, Musa</creatorcontrib><creatorcontrib>Larsen, Edward W.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Transport theory and statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yavuz, Musa</au><au>Larsen, Edward W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial domain decomposition for Neutron transport problems</atitle><jtitle>Transport theory and statistical physics</jtitle><date>1989-04-01</date><risdate>1989</risdate><volume>18</volume><issue>2</issue><spage>205</spage><epage>219</epage><pages>205-219</pages><issn>0041-1450</issn><eissn>1532-2424</eissn><abstract>A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness).</abstract><cop>United States</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00411458908204321</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-1450
ispartof Transport theory and statistical physics, 1989-04, Vol.18 (2), p.205-219
issn 0041-1450
1532-2424
language eng
recordid cdi_osti_scitechconnect_5590314
source Taylor & Francis
subjects 654003 - Radiation & Shielding Physics- Neutron Interactions with Matter
ALGORITHMS
COMPUTER CALCULATIONS
DISCRETE ORDINATE METHOD
ITERATIVE METHODS
MATHEMATICAL LOGIC
NEUTRON TRANSPORT THEORY
NUCLEAR PHYSICS AND RADIATION PHYSICS
TRANSPORT THEORY
title Spatial domain decomposition for Neutron transport problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20domain%20decomposition%20for%20Neutron%20transport%20problems&rft.jtitle=Transport%20theory%20and%20statistical%20physics&rft.au=Yavuz,%20Musa&rft.date=1989-04-01&rft.volume=18&rft.issue=2&rft.spage=205&rft.epage=219&rft.pages=205-219&rft.issn=0041-1450&rft.eissn=1532-2424&rft_id=info:doi/10.1080/00411458908204321&rft_dat=%3Ccrossref_osti_%3E10_1080_00411458908204321%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true