Stereoselective inhibition of thromboxane-induced coronary vasoconstriction by 1,4-dihydropyridine calcium channel antagonists

The biological activity of the (+)‐S‐ and (−)‐R‐enantiomers of niguldipine, of the (−)‐S‐ and (+)‐R‐enantiomers of felodipine and nitrendipine, and of rac‐nisoldipine and rac‐nimodipine was investigated in vitro and in vivo. Inhibition of coronary vasoconstriction due to the thromboxane A2 (TxA2)‐mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chirality (New York, N.Y.) N.Y.), 1990, Vol.2 (4), p.233-240
Hauptverfasser: Eltze, Manfrid, Sanders, Karl H., Boss, Hildegard, Boer, Rainer, Ulrich, Wolf-Rüdiger, Flockerzi, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue 4
container_start_page 233
container_title Chirality (New York, N.Y.)
container_volume 2
creator Eltze, Manfrid
Sanders, Karl H.
Boss, Hildegard
Boer, Rainer
Ulrich, Wolf-Rüdiger
Flockerzi, Dieter
description The biological activity of the (+)‐S‐ and (−)‐R‐enantiomers of niguldipine, of the (−)‐S‐ and (+)‐R‐enantiomers of felodipine and nitrendipine, and of rac‐nisoldipine and rac‐nimodipine was investigated in vitro and in vivo. Inhibition of coronary vasoconstriction due to the thromboxane A2 (TxA2)‐mimetic U‐46619 in guinea pig Langendorff hearts, displacement of (+)‐[3H]isradipine from calcium channel binding sites of guinea pig skeletal muscle T‐tubule membranes, and blood pressure reduction in spontaneously hypertensive rats were determined. The enantiomers were obtained by stereoselective synthesis. Cross‐contamination was
doi_str_mv 10.1002/chir.530020408
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5583743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80305461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4058-2030c8cfd7590a2ca45c24ca2a4a884f3c204914f3a95588dc333ef809c0b9c23</originalsourceid><addsrcrecordid>eNqFUU1v1DAUtBCobAtXbkgRB07N1ontxD6i7SeqWrGAQFws58UhhsRebKc0F347LqkKN07vSW9m9GYGoRcFXhcYl0fQG79mJK2YYv4IrQpW4rwi1efHaIW5EDnGtHyK9kP4hjEWFaF7aK8QFWU1W6Ff76P22gU9aIjmRmfG9qYx0TibuS6LvXdj426V1bmx7QS6zcB5Z5WfsxsVHDgbojfwh9DMWXFI89b0c-vdbvamNVZnoAYw05hBr6zVQ6ZsVF-dNSGGZ-hJp4agn9_PA_Tx9OTD5jy_vD672Ly5zIFixvMSEwwcurZmAqsSFGVQUlCloopz2hFI7kWRFiUY47wFQojuOBaAGwElOUCvFl0XopEBTNTQp99tci0Tg9SUJNDrBbTz7sekQ5SjCaCHIbl3U5A8fcFoVSTgegGCdyF43cmdN2OKRBZY3rUi71qRD60kwst75akZdfsXvtSQ7mK5_zSDnv-jJjfnF9t_tfOFm_LUtw9c5b_LqiY1k5-uzuT27Zcrfky38h35De26q3E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80305461</pqid></control><display><type>article</type><title>Stereoselective inhibition of thromboxane-induced coronary vasoconstriction by 1,4-dihydropyridine calcium channel antagonists</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Eltze, Manfrid ; Sanders, Karl H. ; Boss, Hildegard ; Boer, Rainer ; Ulrich, Wolf-Rüdiger ; Flockerzi, Dieter</creator><creatorcontrib>Eltze, Manfrid ; Sanders, Karl H. ; Boss, Hildegard ; Boer, Rainer ; Ulrich, Wolf-Rüdiger ; Flockerzi, Dieter</creatorcontrib><description>The biological activity of the (+)‐S‐ and (−)‐R‐enantiomers of niguldipine, of the (−)‐S‐ and (+)‐R‐enantiomers of felodipine and nitrendipine, and of rac‐nisoldipine and rac‐nimodipine was investigated in vitro and in vivo. Inhibition of coronary vasoconstriction due to the thromboxane A2 (TxA2)‐mimetic U‐46619 in guinea pig Langendorff hearts, displacement of (+)‐[3H]isradipine from calcium channel binding sites of guinea pig skeletal muscle T‐tubule membranes, and blood pressure reduction in spontaneously hypertensive rats were determined. The enantiomers were obtained by stereoselective synthesis. Cross‐contamination was &lt;0.5% for both S‐ and R‐enantiomers of niguldipine and nitrendipine and &lt;1% for those of felodipine. From the doses necessary for a 50% inhibition of coronary vasoconstriction, stereoselectivity ratios for (+)‐(S)‐/(−)‐(R)‐niguldipine, (−)‐(S)‐/(+)‐(R)‐felodipine, and (−)‐(S)‐/(+)‐(R)‐nitrendipine of 28, 13, and 7, respectively, were calculated. The potency ratio racnisoldipine/rac‐nimodipine was 3.5. Ratios obtained from binding experiments and antihypertensive activity were (+)‐(S)‐/(−)‐(R)‐niguldipine = 45 and 35, (−)‐(S)‐/(+)‐(R)‐felodipine = 12 and 13, (−)‐(S)‐/(+)‐(R)‐nitrendipine = 8 and 8, and rac‐nisoldipine/rac‐nimodipine = 8 and 7, respectively. Highly significant correlations were found between the in vitro potency of the substances to prevent U‐46619‐induced coronary vasoconstriction and their affinity for calcium channel binding sites as well as their antihypertensive activity. The mechanism of TxA2‐induced coronary vasoconstriction in guinea pig Langendorff hearts can be readily explained by a transmembrane influx of extracellular Ca2+ susceptible to stereoselective blockade by 1,4‐dihydropyridine calcium channel antagonists.</description><identifier>ISSN: 0899-0042</identifier><identifier>EISSN: 1520-636X</identifier><identifier>DOI: 10.1002/chir.530020408</identifier><identifier>PMID: 1964575</identifier><language>eng</language><publisher>New York: Alan R. Liss, Inc</publisher><subject>1,4‐dihydropypyridine enantiomers ; 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid ; 4-dihydropypyridine enantiomers ; 550201 - Biochemistry- Tracer Techniques ; ANIMALS ; ARTERIES ; AZINES ; BASIC BIOLOGICAL SCIENCES ; Binding, Competitive ; BIOCHEMICAL REACTION KINETICS ; BLOOD PRESSURE ; BLOOD VESSELS ; BODY ; calcium channel binding ; Calcium Channel Blockers - pharmacology ; Calcium Channels - drug effects ; Calcium Channels - metabolism ; CARDIOVASCULAR DISEASES ; CARDIOVASCULAR SYSTEM ; CELL CONSTITUENTS ; Cell Membrane - metabolism ; CELL MEMBRANES ; CORONARIES ; coronary vasoconstriction ; Dihydropyridines - metabolism ; Dihydropyridines - pharmacology ; DISEASES ; GUINEA PIGS ; HEART ; Heart - drug effects ; Heart - physiology ; HETEROCYCLIC COMPOUNDS ; HYDROGEN COMPOUNDS ; HYPERTENSION ; IN VITRO ; In Vitro Techniques ; IN VIVO ; INHIBITION ; ISOTOPE APPLICATIONS ; Isradipine ; KINETICS ; Male ; MAMMALS ; MEMBRANE PROTEINS ; MEMBRANES ; MUSCLES ; Muscles - metabolism ; ORGANIC COMPOUNDS ; ORGANIC NITROGEN COMPOUNDS ; ORGANS ; PORINS ; Prostaglandin Endoperoxides, Synthetic - pharmacology ; PROSTAGLANDINS ; PROTEINS ; PYRIDINES ; Pyridines - metabolism ; Radioligand Assay ; RATS ; Rats, Inbred SHR ; REACTION KINETICS ; RECEPTORS ; RODENTS ; Stereoisomerism ; stereoselectivity ; Structure-Activity Relationship ; STRUCTURE-ACTIVITY RELATIONSHIPS ; SYMPTOMS ; thromboxane A2 (TxA2) ; Thromboxane A2 - physiology ; TRACER TECHNIQUES ; Tritium ; TRITIUM COMPOUNDS ; VASCULAR DISEASES ; VASOCONSTRICTION ; Vasoconstriction - drug effects ; VERTEBRATES</subject><ispartof>Chirality (New York, N.Y.), 1990, Vol.2 (4), p.233-240</ispartof><rights>Copyright © 1990 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4058-2030c8cfd7590a2ca45c24ca2a4a884f3c204914f3a95588dc333ef809c0b9c23</citedby><cites>FETCH-LOGICAL-c4058-2030c8cfd7590a2ca45c24ca2a4a884f3c204914f3a95588dc333ef809c0b9c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchir.530020408$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchir.530020408$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,4010,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1964575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5583743$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eltze, Manfrid</creatorcontrib><creatorcontrib>Sanders, Karl H.</creatorcontrib><creatorcontrib>Boss, Hildegard</creatorcontrib><creatorcontrib>Boer, Rainer</creatorcontrib><creatorcontrib>Ulrich, Wolf-Rüdiger</creatorcontrib><creatorcontrib>Flockerzi, Dieter</creatorcontrib><title>Stereoselective inhibition of thromboxane-induced coronary vasoconstriction by 1,4-dihydropyridine calcium channel antagonists</title><title>Chirality (New York, N.Y.)</title><addtitle>Chirality</addtitle><description>The biological activity of the (+)‐S‐ and (−)‐R‐enantiomers of niguldipine, of the (−)‐S‐ and (+)‐R‐enantiomers of felodipine and nitrendipine, and of rac‐nisoldipine and rac‐nimodipine was investigated in vitro and in vivo. Inhibition of coronary vasoconstriction due to the thromboxane A2 (TxA2)‐mimetic U‐46619 in guinea pig Langendorff hearts, displacement of (+)‐[3H]isradipine from calcium channel binding sites of guinea pig skeletal muscle T‐tubule membranes, and blood pressure reduction in spontaneously hypertensive rats were determined. The enantiomers were obtained by stereoselective synthesis. Cross‐contamination was &lt;0.5% for both S‐ and R‐enantiomers of niguldipine and nitrendipine and &lt;1% for those of felodipine. From the doses necessary for a 50% inhibition of coronary vasoconstriction, stereoselectivity ratios for (+)‐(S)‐/(−)‐(R)‐niguldipine, (−)‐(S)‐/(+)‐(R)‐felodipine, and (−)‐(S)‐/(+)‐(R)‐nitrendipine of 28, 13, and 7, respectively, were calculated. The potency ratio racnisoldipine/rac‐nimodipine was 3.5. Ratios obtained from binding experiments and antihypertensive activity were (+)‐(S)‐/(−)‐(R)‐niguldipine = 45 and 35, (−)‐(S)‐/(+)‐(R)‐felodipine = 12 and 13, (−)‐(S)‐/(+)‐(R)‐nitrendipine = 8 and 8, and rac‐nisoldipine/rac‐nimodipine = 8 and 7, respectively. Highly significant correlations were found between the in vitro potency of the substances to prevent U‐46619‐induced coronary vasoconstriction and their affinity for calcium channel binding sites as well as their antihypertensive activity. The mechanism of TxA2‐induced coronary vasoconstriction in guinea pig Langendorff hearts can be readily explained by a transmembrane influx of extracellular Ca2+ susceptible to stereoselective blockade by 1,4‐dihydropyridine calcium channel antagonists.</description><subject>1,4‐dihydropypyridine enantiomers</subject><subject>15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid</subject><subject>4-dihydropypyridine enantiomers</subject><subject>550201 - Biochemistry- Tracer Techniques</subject><subject>ANIMALS</subject><subject>ARTERIES</subject><subject>AZINES</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding, Competitive</subject><subject>BIOCHEMICAL REACTION KINETICS</subject><subject>BLOOD PRESSURE</subject><subject>BLOOD VESSELS</subject><subject>BODY</subject><subject>calcium channel binding</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>Calcium Channels - drug effects</subject><subject>Calcium Channels - metabolism</subject><subject>CARDIOVASCULAR DISEASES</subject><subject>CARDIOVASCULAR SYSTEM</subject><subject>CELL CONSTITUENTS</subject><subject>Cell Membrane - metabolism</subject><subject>CELL MEMBRANES</subject><subject>CORONARIES</subject><subject>coronary vasoconstriction</subject><subject>Dihydropyridines - metabolism</subject><subject>Dihydropyridines - pharmacology</subject><subject>DISEASES</subject><subject>GUINEA PIGS</subject><subject>HEART</subject><subject>Heart - drug effects</subject><subject>Heart - physiology</subject><subject>HETEROCYCLIC COMPOUNDS</subject><subject>HYDROGEN COMPOUNDS</subject><subject>HYPERTENSION</subject><subject>IN VITRO</subject><subject>In Vitro Techniques</subject><subject>IN VIVO</subject><subject>INHIBITION</subject><subject>ISOTOPE APPLICATIONS</subject><subject>Isradipine</subject><subject>KINETICS</subject><subject>Male</subject><subject>MAMMALS</subject><subject>MEMBRANE PROTEINS</subject><subject>MEMBRANES</subject><subject>MUSCLES</subject><subject>Muscles - metabolism</subject><subject>ORGANIC COMPOUNDS</subject><subject>ORGANIC NITROGEN COMPOUNDS</subject><subject>ORGANS</subject><subject>PORINS</subject><subject>Prostaglandin Endoperoxides, Synthetic - pharmacology</subject><subject>PROSTAGLANDINS</subject><subject>PROTEINS</subject><subject>PYRIDINES</subject><subject>Pyridines - metabolism</subject><subject>Radioligand Assay</subject><subject>RATS</subject><subject>Rats, Inbred SHR</subject><subject>REACTION KINETICS</subject><subject>RECEPTORS</subject><subject>RODENTS</subject><subject>Stereoisomerism</subject><subject>stereoselectivity</subject><subject>Structure-Activity Relationship</subject><subject>STRUCTURE-ACTIVITY RELATIONSHIPS</subject><subject>SYMPTOMS</subject><subject>thromboxane A2 (TxA2)</subject><subject>Thromboxane A2 - physiology</subject><subject>TRACER TECHNIQUES</subject><subject>Tritium</subject><subject>TRITIUM COMPOUNDS</subject><subject>VASCULAR DISEASES</subject><subject>VASOCONSTRICTION</subject><subject>Vasoconstriction - drug effects</subject><subject>VERTEBRATES</subject><issn>0899-0042</issn><issn>1520-636X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAUtBCobAtXbkgRB07N1ontxD6i7SeqWrGAQFws58UhhsRebKc0F347LqkKN07vSW9m9GYGoRcFXhcYl0fQG79mJK2YYv4IrQpW4rwi1efHaIW5EDnGtHyK9kP4hjEWFaF7aK8QFWU1W6Ff76P22gU9aIjmRmfG9qYx0TibuS6LvXdj426V1bmx7QS6zcB5Z5WfsxsVHDgbojfwh9DMWXFI89b0c-vdbvamNVZnoAYw05hBr6zVQ6ZsVF-dNSGGZ-hJp4agn9_PA_Tx9OTD5jy_vD672Ly5zIFixvMSEwwcurZmAqsSFGVQUlCloopz2hFI7kWRFiUY47wFQojuOBaAGwElOUCvFl0XopEBTNTQp99tci0Tg9SUJNDrBbTz7sekQ5SjCaCHIbl3U5A8fcFoVSTgegGCdyF43cmdN2OKRBZY3rUi71qRD60kwst75akZdfsXvtSQ7mK5_zSDnv-jJjfnF9t_tfOFm_LUtw9c5b_LqiY1k5-uzuT27Zcrfky38h35De26q3E</recordid><startdate>1990</startdate><enddate>1990</enddate><creator>Eltze, Manfrid</creator><creator>Sanders, Karl H.</creator><creator>Boss, Hildegard</creator><creator>Boer, Rainer</creator><creator>Ulrich, Wolf-Rüdiger</creator><creator>Flockerzi, Dieter</creator><general>Alan R. Liss, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>1990</creationdate><title>Stereoselective inhibition of thromboxane-induced coronary vasoconstriction by 1,4-dihydropyridine calcium channel antagonists</title><author>Eltze, Manfrid ; Sanders, Karl H. ; Boss, Hildegard ; Boer, Rainer ; Ulrich, Wolf-Rüdiger ; Flockerzi, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4058-2030c8cfd7590a2ca45c24ca2a4a884f3c204914f3a95588dc333ef809c0b9c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>1,4‐dihydropypyridine enantiomers</topic><topic>15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid</topic><topic>4-dihydropypyridine enantiomers</topic><topic>550201 - Biochemistry- Tracer Techniques</topic><topic>ANIMALS</topic><topic>ARTERIES</topic><topic>AZINES</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding, Competitive</topic><topic>BIOCHEMICAL REACTION KINETICS</topic><topic>BLOOD PRESSURE</topic><topic>BLOOD VESSELS</topic><topic>BODY</topic><topic>calcium channel binding</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>Calcium Channels - drug effects</topic><topic>Calcium Channels - metabolism</topic><topic>CARDIOVASCULAR DISEASES</topic><topic>CARDIOVASCULAR SYSTEM</topic><topic>CELL CONSTITUENTS</topic><topic>Cell Membrane - metabolism</topic><topic>CELL MEMBRANES</topic><topic>CORONARIES</topic><topic>coronary vasoconstriction</topic><topic>Dihydropyridines - metabolism</topic><topic>Dihydropyridines - pharmacology</topic><topic>DISEASES</topic><topic>GUINEA PIGS</topic><topic>HEART</topic><topic>Heart - drug effects</topic><topic>Heart - physiology</topic><topic>HETEROCYCLIC COMPOUNDS</topic><topic>HYDROGEN COMPOUNDS</topic><topic>HYPERTENSION</topic><topic>IN VITRO</topic><topic>In Vitro Techniques</topic><topic>IN VIVO</topic><topic>INHIBITION</topic><topic>ISOTOPE APPLICATIONS</topic><topic>Isradipine</topic><topic>KINETICS</topic><topic>Male</topic><topic>MAMMALS</topic><topic>MEMBRANE PROTEINS</topic><topic>MEMBRANES</topic><topic>MUSCLES</topic><topic>Muscles - metabolism</topic><topic>ORGANIC COMPOUNDS</topic><topic>ORGANIC NITROGEN COMPOUNDS</topic><topic>ORGANS</topic><topic>PORINS</topic><topic>Prostaglandin Endoperoxides, Synthetic - pharmacology</topic><topic>PROSTAGLANDINS</topic><topic>PROTEINS</topic><topic>PYRIDINES</topic><topic>Pyridines - metabolism</topic><topic>Radioligand Assay</topic><topic>RATS</topic><topic>Rats, Inbred SHR</topic><topic>REACTION KINETICS</topic><topic>RECEPTORS</topic><topic>RODENTS</topic><topic>Stereoisomerism</topic><topic>stereoselectivity</topic><topic>Structure-Activity Relationship</topic><topic>STRUCTURE-ACTIVITY RELATIONSHIPS</topic><topic>SYMPTOMS</topic><topic>thromboxane A2 (TxA2)</topic><topic>Thromboxane A2 - physiology</topic><topic>TRACER TECHNIQUES</topic><topic>Tritium</topic><topic>TRITIUM COMPOUNDS</topic><topic>VASCULAR DISEASES</topic><topic>VASOCONSTRICTION</topic><topic>Vasoconstriction - drug effects</topic><topic>VERTEBRATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eltze, Manfrid</creatorcontrib><creatorcontrib>Sanders, Karl H.</creatorcontrib><creatorcontrib>Boss, Hildegard</creatorcontrib><creatorcontrib>Boer, Rainer</creatorcontrib><creatorcontrib>Ulrich, Wolf-Rüdiger</creatorcontrib><creatorcontrib>Flockerzi, Dieter</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chirality (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eltze, Manfrid</au><au>Sanders, Karl H.</au><au>Boss, Hildegard</au><au>Boer, Rainer</au><au>Ulrich, Wolf-Rüdiger</au><au>Flockerzi, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stereoselective inhibition of thromboxane-induced coronary vasoconstriction by 1,4-dihydropyridine calcium channel antagonists</atitle><jtitle>Chirality (New York, N.Y.)</jtitle><addtitle>Chirality</addtitle><date>1990</date><risdate>1990</risdate><volume>2</volume><issue>4</issue><spage>233</spage><epage>240</epage><pages>233-240</pages><issn>0899-0042</issn><eissn>1520-636X</eissn><abstract>The biological activity of the (+)‐S‐ and (−)‐R‐enantiomers of niguldipine, of the (−)‐S‐ and (+)‐R‐enantiomers of felodipine and nitrendipine, and of rac‐nisoldipine and rac‐nimodipine was investigated in vitro and in vivo. Inhibition of coronary vasoconstriction due to the thromboxane A2 (TxA2)‐mimetic U‐46619 in guinea pig Langendorff hearts, displacement of (+)‐[3H]isradipine from calcium channel binding sites of guinea pig skeletal muscle T‐tubule membranes, and blood pressure reduction in spontaneously hypertensive rats were determined. The enantiomers were obtained by stereoselective synthesis. Cross‐contamination was &lt;0.5% for both S‐ and R‐enantiomers of niguldipine and nitrendipine and &lt;1% for those of felodipine. From the doses necessary for a 50% inhibition of coronary vasoconstriction, stereoselectivity ratios for (+)‐(S)‐/(−)‐(R)‐niguldipine, (−)‐(S)‐/(+)‐(R)‐felodipine, and (−)‐(S)‐/(+)‐(R)‐nitrendipine of 28, 13, and 7, respectively, were calculated. The potency ratio racnisoldipine/rac‐nimodipine was 3.5. Ratios obtained from binding experiments and antihypertensive activity were (+)‐(S)‐/(−)‐(R)‐niguldipine = 45 and 35, (−)‐(S)‐/(+)‐(R)‐felodipine = 12 and 13, (−)‐(S)‐/(+)‐(R)‐nitrendipine = 8 and 8, and rac‐nisoldipine/rac‐nimodipine = 8 and 7, respectively. Highly significant correlations were found between the in vitro potency of the substances to prevent U‐46619‐induced coronary vasoconstriction and their affinity for calcium channel binding sites as well as their antihypertensive activity. The mechanism of TxA2‐induced coronary vasoconstriction in guinea pig Langendorff hearts can be readily explained by a transmembrane influx of extracellular Ca2+ susceptible to stereoselective blockade by 1,4‐dihydropyridine calcium channel antagonists.</abstract><cop>New York</cop><pub>Alan R. Liss, Inc</pub><pmid>1964575</pmid><doi>10.1002/chir.530020408</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-0042
ispartof Chirality (New York, N.Y.), 1990, Vol.2 (4), p.233-240
issn 0899-0042
1520-636X
language eng
recordid cdi_osti_scitechconnect_5583743
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 1,4‐dihydropypyridine enantiomers
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid
4-dihydropypyridine enantiomers
550201 - Biochemistry- Tracer Techniques
ANIMALS
ARTERIES
AZINES
BASIC BIOLOGICAL SCIENCES
Binding, Competitive
BIOCHEMICAL REACTION KINETICS
BLOOD PRESSURE
BLOOD VESSELS
BODY
calcium channel binding
Calcium Channel Blockers - pharmacology
Calcium Channels - drug effects
Calcium Channels - metabolism
CARDIOVASCULAR DISEASES
CARDIOVASCULAR SYSTEM
CELL CONSTITUENTS
Cell Membrane - metabolism
CELL MEMBRANES
CORONARIES
coronary vasoconstriction
Dihydropyridines - metabolism
Dihydropyridines - pharmacology
DISEASES
GUINEA PIGS
HEART
Heart - drug effects
Heart - physiology
HETEROCYCLIC COMPOUNDS
HYDROGEN COMPOUNDS
HYPERTENSION
IN VITRO
In Vitro Techniques
IN VIVO
INHIBITION
ISOTOPE APPLICATIONS
Isradipine
KINETICS
Male
MAMMALS
MEMBRANE PROTEINS
MEMBRANES
MUSCLES
Muscles - metabolism
ORGANIC COMPOUNDS
ORGANIC NITROGEN COMPOUNDS
ORGANS
PORINS
Prostaglandin Endoperoxides, Synthetic - pharmacology
PROSTAGLANDINS
PROTEINS
PYRIDINES
Pyridines - metabolism
Radioligand Assay
RATS
Rats, Inbred SHR
REACTION KINETICS
RECEPTORS
RODENTS
Stereoisomerism
stereoselectivity
Structure-Activity Relationship
STRUCTURE-ACTIVITY RELATIONSHIPS
SYMPTOMS
thromboxane A2 (TxA2)
Thromboxane A2 - physiology
TRACER TECHNIQUES
Tritium
TRITIUM COMPOUNDS
VASCULAR DISEASES
VASOCONSTRICTION
Vasoconstriction - drug effects
VERTEBRATES
title Stereoselective inhibition of thromboxane-induced coronary vasoconstriction by 1,4-dihydropyridine calcium channel antagonists
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stereoselective%20inhibition%20of%20thromboxane-induced%20coronary%20vasoconstriction%20by%201,4-dihydropyridine%20calcium%20channel%20antagonists&rft.jtitle=Chirality%20(New%20York,%20N.Y.)&rft.au=Eltze,%20Manfrid&rft.date=1990&rft.volume=2&rft.issue=4&rft.spage=233&rft.epage=240&rft.pages=233-240&rft.issn=0899-0042&rft.eissn=1520-636X&rft_id=info:doi/10.1002/chir.530020408&rft_dat=%3Cproquest_osti_%3E80305461%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80305461&rft_id=info:pmid/1964575&rfr_iscdi=true