Ceramic Powder Synthesis by Spray Pyrolysis

A variety of spray pyrolysis (SP) techniques have been developed to directly produce ceramic powders from solutions. This paper reviews the current status of these processes in terms of the process parameters that enable the formation of particles with controlled morphology and composition. A model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 1993-11, Vol.76 (11), p.2707-2726
Hauptverfasser: Messing, Gary L., Zhang, Shi-Chang, Jayanthi, Gopal V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2726
container_issue 11
container_start_page 2707
container_title Journal of the American Ceramic Society
container_volume 76
creator Messing, Gary L.
Zhang, Shi-Chang
Jayanthi, Gopal V.
description A variety of spray pyrolysis (SP) techniques have been developed to directly produce ceramic powders from solutions. This paper reviews the current status of these processes in terms of the process parameters that enable the formation of particles with controlled morphology and composition. A model incorporating solute diffusion in the droplet and solvent evaporation from the droplet surface is presented to establish the critical parameters leading to solid particle formation. The model illustrates that solid particles can be obtained if solutes with high solubility and a large difference between the critical supersaturation and equilibrium concentration are used and if the process is designed to avoid solvent boiling. It is demonstrated that mixed metal oxide, non‐oxide, and composite particles that are solid, hollow, porous, or fibrous can be produced by modifying the precursor characteristics, solution properties, and process parameters. The physical and chemical flexibility of SP processes offers numerous opportunities for the controlled synthesis of advanced ceramic powders and films. However, production rates are limited by the need to produce < 5‐μm‐diameter droplets and to avoid subsequent droplet coagulation. Developments in process controls, atomization, and system design are required for wider commercialization of SP‐type processes.
doi_str_mv 10.1111/j.1151-2916.1993.tb04007.x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5520155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25987334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5767-6d35c9b6ebd639dfc12433a4d0bfae1577a81474e8574b882a17f9b02ea3bba33</originalsourceid><addsrcrecordid>eNqVkFtLwzAUx4MoOC_foYj4Ip25NE3rkzrmHW9TBF8OSZpiZtfOpOL67c3o8FnzcsjJL__D-SG0R_CQhHM0DYWTmOYkHZI8Z8NW4QRjMVysoQHhq6d1NMAY01hkFG-iLe-n4UryLBmgw5FxcmZ19NB8F8ZFk65u3423PlJdNJk72UUPnWuqLrR20EYpK292V3UbvZyPn0eX8e39xdXo9DbWXKQiTgvGda5So4qU5UWpCU0Yk0mBVSkN4ULIjCQiMRkXicoyKokoc4WpkUwpydg22utzG99a8Nq2Rr_rpq6NboFzisNiATrooblrPr-Mb2FmvTZVJWvTfHmgPM8EY8mfQC4oCeBxD2rXeO9MCXNnZ9J1QDAsbcMUlrZhqRSWtmFlGxbh8_5qivRaVqWTtbb-N4FljBOcBuykx75tZbp_DIDr09GYCixCRNxHWN-axW-EdB-QCiY4vN5dwNPj2eT55pzDG_sBzaGh2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25985721</pqid></control><display><type>article</type><title>Ceramic Powder Synthesis by Spray Pyrolysis</title><source>Wiley Online Library All Journals</source><creator>Messing, Gary L. ; Zhang, Shi-Chang ; Jayanthi, Gopal V.</creator><creatorcontrib>Messing, Gary L. ; Zhang, Shi-Chang ; Jayanthi, Gopal V.</creatorcontrib><description>A variety of spray pyrolysis (SP) techniques have been developed to directly produce ceramic powders from solutions. This paper reviews the current status of these processes in terms of the process parameters that enable the formation of particles with controlled morphology and composition. A model incorporating solute diffusion in the droplet and solvent evaporation from the droplet surface is presented to establish the critical parameters leading to solid particle formation. The model illustrates that solid particles can be obtained if solutes with high solubility and a large difference between the critical supersaturation and equilibrium concentration are used and if the process is designed to avoid solvent boiling. It is demonstrated that mixed metal oxide, non‐oxide, and composite particles that are solid, hollow, porous, or fibrous can be produced by modifying the precursor characteristics, solution properties, and process parameters. The physical and chemical flexibility of SP processes offers numerous opportunities for the controlled synthesis of advanced ceramic powders and films. However, production rates are limited by the need to produce &lt; 5‐μm‐diameter droplets and to avoid subsequent droplet coagulation. Developments in process controls, atomization, and system design are required for wider commercialization of SP‐type processes.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1993.tb04007.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>360601 - Other Materials- Preparation &amp; Manufacture ; Applied sciences ; Building materials. Ceramics. Glasses ; Ceramic industries ; Chemical industry and chemicals ; CHEMICAL REACTIONS ; COMPOSITE MATERIALS ; DECOMPOSITION ; Exact sciences and technology ; FABRICATION ; FIBERS ; General studies ; MATERIALS ; MATERIALS SCIENCE ; MATHEMATICAL MODELS ; POWDERS ; PYROLYSIS ; Technical ceramics ; THERMOCHEMICAL PROCESSES</subject><ispartof>Journal of the American Ceramic Society, 1993-11, Vol.76 (11), p.2707-2726</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5767-6d35c9b6ebd639dfc12433a4d0bfae1577a81474e8574b882a17f9b02ea3bba33</citedby><cites>FETCH-LOGICAL-c5767-6d35c9b6ebd639dfc12433a4d0bfae1577a81474e8574b882a17f9b02ea3bba33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1993.tb04007.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1993.tb04007.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3835106$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5520155$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Messing, Gary L.</creatorcontrib><creatorcontrib>Zhang, Shi-Chang</creatorcontrib><creatorcontrib>Jayanthi, Gopal V.</creatorcontrib><title>Ceramic Powder Synthesis by Spray Pyrolysis</title><title>Journal of the American Ceramic Society</title><description>A variety of spray pyrolysis (SP) techniques have been developed to directly produce ceramic powders from solutions. This paper reviews the current status of these processes in terms of the process parameters that enable the formation of particles with controlled morphology and composition. A model incorporating solute diffusion in the droplet and solvent evaporation from the droplet surface is presented to establish the critical parameters leading to solid particle formation. The model illustrates that solid particles can be obtained if solutes with high solubility and a large difference between the critical supersaturation and equilibrium concentration are used and if the process is designed to avoid solvent boiling. It is demonstrated that mixed metal oxide, non‐oxide, and composite particles that are solid, hollow, porous, or fibrous can be produced by modifying the precursor characteristics, solution properties, and process parameters. The physical and chemical flexibility of SP processes offers numerous opportunities for the controlled synthesis of advanced ceramic powders and films. However, production rates are limited by the need to produce &lt; 5‐μm‐diameter droplets and to avoid subsequent droplet coagulation. Developments in process controls, atomization, and system design are required for wider commercialization of SP‐type processes.</description><subject>360601 - Other Materials- Preparation &amp; Manufacture</subject><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Chemical industry and chemicals</subject><subject>CHEMICAL REACTIONS</subject><subject>COMPOSITE MATERIALS</subject><subject>DECOMPOSITION</subject><subject>Exact sciences and technology</subject><subject>FABRICATION</subject><subject>FIBERS</subject><subject>General studies</subject><subject>MATERIALS</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICAL MODELS</subject><subject>POWDERS</subject><subject>PYROLYSIS</subject><subject>Technical ceramics</subject><subject>THERMOCHEMICAL PROCESSES</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqVkFtLwzAUx4MoOC_foYj4Ip25NE3rkzrmHW9TBF8OSZpiZtfOpOL67c3o8FnzcsjJL__D-SG0R_CQhHM0DYWTmOYkHZI8Z8NW4QRjMVysoQHhq6d1NMAY01hkFG-iLe-n4UryLBmgw5FxcmZ19NB8F8ZFk65u3423PlJdNJk72UUPnWuqLrR20EYpK292V3UbvZyPn0eX8e39xdXo9DbWXKQiTgvGda5So4qU5UWpCU0Yk0mBVSkN4ULIjCQiMRkXicoyKokoc4WpkUwpydg22utzG99a8Nq2Rr_rpq6NboFzisNiATrooblrPr-Mb2FmvTZVJWvTfHmgPM8EY8mfQC4oCeBxD2rXeO9MCXNnZ9J1QDAsbcMUlrZhqRSWtmFlGxbh8_5qivRaVqWTtbb-N4FljBOcBuykx75tZbp_DIDr09GYCixCRNxHWN-axW-EdB-QCiY4vN5dwNPj2eT55pzDG_sBzaGh2Q</recordid><startdate>199311</startdate><enddate>199311</enddate><creator>Messing, Gary L.</creator><creator>Zhang, Shi-Chang</creator><creator>Jayanthi, Gopal V.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QQ</scope><scope>OTOTI</scope></search><sort><creationdate>199311</creationdate><title>Ceramic Powder Synthesis by Spray Pyrolysis</title><author>Messing, Gary L. ; Zhang, Shi-Chang ; Jayanthi, Gopal V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5767-6d35c9b6ebd639dfc12433a4d0bfae1577a81474e8574b882a17f9b02ea3bba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>360601 - Other Materials- Preparation &amp; Manufacture</topic><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Chemical industry and chemicals</topic><topic>CHEMICAL REACTIONS</topic><topic>COMPOSITE MATERIALS</topic><topic>DECOMPOSITION</topic><topic>Exact sciences and technology</topic><topic>FABRICATION</topic><topic>FIBERS</topic><topic>General studies</topic><topic>MATERIALS</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICAL MODELS</topic><topic>POWDERS</topic><topic>PYROLYSIS</topic><topic>Technical ceramics</topic><topic>THERMOCHEMICAL PROCESSES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messing, Gary L.</creatorcontrib><creatorcontrib>Zhang, Shi-Chang</creatorcontrib><creatorcontrib>Jayanthi, Gopal V.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Ceramic Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messing, Gary L.</au><au>Zhang, Shi-Chang</au><au>Jayanthi, Gopal V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ceramic Powder Synthesis by Spray Pyrolysis</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1993-11</date><risdate>1993</risdate><volume>76</volume><issue>11</issue><spage>2707</spage><epage>2726</epage><pages>2707-2726</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>A variety of spray pyrolysis (SP) techniques have been developed to directly produce ceramic powders from solutions. This paper reviews the current status of these processes in terms of the process parameters that enable the formation of particles with controlled morphology and composition. A model incorporating solute diffusion in the droplet and solvent evaporation from the droplet surface is presented to establish the critical parameters leading to solid particle formation. The model illustrates that solid particles can be obtained if solutes with high solubility and a large difference between the critical supersaturation and equilibrium concentration are used and if the process is designed to avoid solvent boiling. It is demonstrated that mixed metal oxide, non‐oxide, and composite particles that are solid, hollow, porous, or fibrous can be produced by modifying the precursor characteristics, solution properties, and process parameters. The physical and chemical flexibility of SP processes offers numerous opportunities for the controlled synthesis of advanced ceramic powders and films. However, production rates are limited by the need to produce &lt; 5‐μm‐diameter droplets and to avoid subsequent droplet coagulation. Developments in process controls, atomization, and system design are required for wider commercialization of SP‐type processes.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1993.tb04007.x</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 1993-11, Vol.76 (11), p.2707-2726
issn 0002-7820
1551-2916
language eng
recordid cdi_osti_scitechconnect_5520155
source Wiley Online Library All Journals
subjects 360601 - Other Materials- Preparation & Manufacture
Applied sciences
Building materials. Ceramics. Glasses
Ceramic industries
Chemical industry and chemicals
CHEMICAL REACTIONS
COMPOSITE MATERIALS
DECOMPOSITION
Exact sciences and technology
FABRICATION
FIBERS
General studies
MATERIALS
MATERIALS SCIENCE
MATHEMATICAL MODELS
POWDERS
PYROLYSIS
Technical ceramics
THERMOCHEMICAL PROCESSES
title Ceramic Powder Synthesis by Spray Pyrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ceramic%20Powder%20Synthesis%20by%20Spray%20Pyrolysis&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Messing,%20Gary%20L.&rft.date=1993-11&rft.volume=76&rft.issue=11&rft.spage=2707&rft.epage=2726&rft.pages=2707-2726&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1993.tb04007.x&rft_dat=%3Cproquest_osti_%3E25987334%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25985721&rft_id=info:pmid/&rfr_iscdi=true