An invariance principle for reversible Markov processes: applications to random motions in random environments

The authors present an invariance principle for antisymmetric functions of a reversible Markov process which immediately implies convergence to Brownian motion for a wide class of random motions in random environments. They apply it to establish convergence to Brownian motion (i) for a walker moving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 1989-05, Vol.55 (3-4), p.787-855
Hauptverfasser: DE MASI, A, FERRARI, P. A, GOLDSTEIN, S, WICK, W. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors present an invariance principle for antisymmetric functions of a reversible Markov process which immediately implies convergence to Brownian motion for a wide class of random motions in random environments. They apply it to establish convergence to Brownian motion (i) for a walker moving in the infinite cluster of the two-dimensional bond percolation model, (ii) for a d-dimensional walker moving in a symmetric random environment under very mild assumptions on the distribution of the environment, (iii) for a tagged particle in a d-dimensional symmetric lattice gas which allows interchanges, (iv) for a tagged particle in a d-dimensional system of interacting Brownian particles. Their formulation also leads naturally to bounds on the diffusion constant.
ISSN:0022-4715
1572-9613
DOI:10.1007/bf01041608