An invariance principle for reversible Markov processes: applications to random motions in random environments
The authors present an invariance principle for antisymmetric functions of a reversible Markov process which immediately implies convergence to Brownian motion for a wide class of random motions in random environments. They apply it to establish convergence to Brownian motion (i) for a walker moving...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 1989-05, Vol.55 (3-4), p.787-855 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors present an invariance principle for antisymmetric functions of a reversible Markov process which immediately implies convergence to Brownian motion for a wide class of random motions in random environments. They apply it to establish convergence to Brownian motion (i) for a walker moving in the infinite cluster of the two-dimensional bond percolation model, (ii) for a d-dimensional walker moving in a symmetric random environment under very mild assumptions on the distribution of the environment, (iii) for a tagged particle in a d-dimensional symmetric lattice gas which allows interchanges, (iv) for a tagged particle in a d-dimensional system of interacting Brownian particles. Their formulation also leads naturally to bounds on the diffusion constant. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/bf01041608 |