Vacancy supersaturation in rapidly solidified metal droplets

A self-consistent theory for vacancy entrapment in rapidly solidified metal droplets is presented. Supersaturation occurs when excess (nonequilibrium) vacancies created at the solidification front by the liquid-solid density difference are unable to diffuse back to the interface before the droplet s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 1991-05, Vol.43 (10), p.5344-5354
Hauptverfasser: VAN SICLEN, C. D, WOLFER, W. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5354
container_issue 10
container_start_page 5344
container_title Physical review. A, Atomic, molecular, and optical physics
container_volume 43
creator VAN SICLEN, C. D
WOLFER, W. G
description A self-consistent theory for vacancy entrapment in rapidly solidified metal droplets is presented. Supersaturation occurs when excess (nonequilibrium) vacancies created at the solidification front by the liquid-solid density difference are unable to diffuse back to the interface before the droplet solidifies. The model consists of heat-conduction equations for the liquid and solid phases, a vacancy-diffusion equation, and boundary conditions at the internal and external surfaces that provide coupling between regions and generate the interface dynamics and vacancy entrapment. Solutions to this system of equations are derived in the form of a set of integral equations that incorporate the boundary conditions as integral kernels. These are evaluated numerically to produce temperature and vacancy-concentration profiles for rapidly solidified droplets of various sizes, initial undercoolings, and convective cooling rates. For undercooled, micrometer-sized metal droplets, the model gives vacancy concentrations at solidification far in excess of equilibrium values.
doi_str_mv 10.1103/PhysRevA.43.5344
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5461961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859265074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-356c1ef31a9227a833347706f6334ced66acd517a06845371311b72fb231adc13</originalsourceid><addsrcrecordid>eNo9kEtLAzEYRYMotVb3boRBXLiZmnc64KYUX1BQRN2GNMnQyLxMMkL_vRk6NptcuOd-iwPAJYJzhCC5e9vuwrv9Xc4pmTNC6RGYIljQHHGMj4fMYI4LKk7BWQjfMD26KCZgUhQpUDEF919Kq0bvstB31gcVe6-ia5vMNZlXnTNVqtrKGVc6a7LaRlVlxrddZWM4ByelqoK9GP8Z-Hx8-Fg95-vXp5fVcp1rwmjMCeMa2ZIgVWAs1IIQQoWAvOQpaGs4V9owJBTkC8qIQAShjcDlBqeJ0YjMwPX-bhuik0G7aPVWt01jdZSMclTwAbrdQ51vf3oboqxd0LaqVGPbPki0YAXmDAqaULhHtW9D8LaUnXe18juJoBy8yn-vkhI5eE2Tq_F6v6mtOQxGkam_GXsVtKpKn6S6cMAYRZQQRv4Ah56APA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859265074</pqid></control><display><type>article</type><title>Vacancy supersaturation in rapidly solidified metal droplets</title><source>American Physical Society Journals</source><creator>VAN SICLEN, C. D ; WOLFER, W. G</creator><creatorcontrib>VAN SICLEN, C. D ; WOLFER, W. G</creatorcontrib><description>A self-consistent theory for vacancy entrapment in rapidly solidified metal droplets is presented. Supersaturation occurs when excess (nonequilibrium) vacancies created at the solidification front by the liquid-solid density difference are unable to diffuse back to the interface before the droplet solidifies. The model consists of heat-conduction equations for the liquid and solid phases, a vacancy-diffusion equation, and boundary conditions at the internal and external surfaces that provide coupling between regions and generate the interface dynamics and vacancy entrapment. Solutions to this system of equations are derived in the form of a set of integral equations that incorporate the boundary conditions as integral kernels. These are evaluated numerically to produce temperature and vacancy-concentration profiles for rapidly solidified droplets of various sizes, initial undercoolings, and convective cooling rates. For undercooled, micrometer-sized metal droplets, the model gives vacancy concentrations at solidification far in excess of equilibrium values.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.43.5344</identifier><identifier>PMID: 9904847</identifier><identifier>CODEN: PLRAAN</identifier><language>eng</language><publisher>College Park, MD: American Physical Society</publisher><subject>656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-) ; ALLOYS ; BOUNDARY CONDITIONS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; ELEMENTS ; Exact sciences and technology ; FLUIDS ; KINETICS ; LIQUID METALS ; LIQUIDS ; METALS ; PHASE TRANSFORMATIONS ; Physics ; SATURATION ; SOLIDIFICATION ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; SUPERSATURATION ; TRAPPING ; VOIDS</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 1991-05, Vol.43 (10), p.5344-5354</ispartof><rights>1992 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-356c1ef31a9227a833347706f6334ced66acd517a06845371311b72fb231adc13</citedby><cites>FETCH-LOGICAL-c354t-356c1ef31a9227a833347706f6334ced66acd517a06845371311b72fb231adc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5414335$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9904847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5461961$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>VAN SICLEN, C. D</creatorcontrib><creatorcontrib>WOLFER, W. G</creatorcontrib><title>Vacancy supersaturation in rapidly solidified metal droplets</title><title>Physical review. A, Atomic, molecular, and optical physics</title><addtitle>Phys Rev A</addtitle><description>A self-consistent theory for vacancy entrapment in rapidly solidified metal droplets is presented. Supersaturation occurs when excess (nonequilibrium) vacancies created at the solidification front by the liquid-solid density difference are unable to diffuse back to the interface before the droplet solidifies. The model consists of heat-conduction equations for the liquid and solid phases, a vacancy-diffusion equation, and boundary conditions at the internal and external surfaces that provide coupling between regions and generate the interface dynamics and vacancy entrapment. Solutions to this system of equations are derived in the form of a set of integral equations that incorporate the boundary conditions as integral kernels. These are evaluated numerically to produce temperature and vacancy-concentration profiles for rapidly solidified droplets of various sizes, initial undercoolings, and convective cooling rates. For undercooled, micrometer-sized metal droplets, the model gives vacancy concentrations at solidification far in excess of equilibrium values.</description><subject>656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-)</subject><subject>ALLOYS</subject><subject>BOUNDARY CONDITIONS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>ELEMENTS</subject><subject>Exact sciences and technology</subject><subject>FLUIDS</subject><subject>KINETICS</subject><subject>LIQUID METALS</subject><subject>LIQUIDS</subject><subject>METALS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physics</subject><subject>SATURATION</subject><subject>SOLIDIFICATION</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>SUPERSATURATION</subject><subject>TRAPPING</subject><subject>VOIDS</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEYRYMotVb3boRBXLiZmnc64KYUX1BQRN2GNMnQyLxMMkL_vRk6NptcuOd-iwPAJYJzhCC5e9vuwrv9Xc4pmTNC6RGYIljQHHGMj4fMYI4LKk7BWQjfMD26KCZgUhQpUDEF919Kq0bvstB31gcVe6-ia5vMNZlXnTNVqtrKGVc6a7LaRlVlxrddZWM4ByelqoK9GP8Z-Hx8-Fg95-vXp5fVcp1rwmjMCeMa2ZIgVWAs1IIQQoWAvOQpaGs4V9owJBTkC8qIQAShjcDlBqeJ0YjMwPX-bhuik0G7aPVWt01jdZSMclTwAbrdQ51vf3oboqxd0LaqVGPbPki0YAXmDAqaULhHtW9D8LaUnXe18juJoBy8yn-vkhI5eE2Tq_F6v6mtOQxGkam_GXsVtKpKn6S6cMAYRZQQRv4Ah56APA</recordid><startdate>19910515</startdate><enddate>19910515</enddate><creator>VAN SICLEN, C. D</creator><creator>WOLFER, W. G</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19910515</creationdate><title>Vacancy supersaturation in rapidly solidified metal droplets</title><author>VAN SICLEN, C. D ; WOLFER, W. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-356c1ef31a9227a833347706f6334ced66acd517a06845371311b72fb231adc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-)</topic><topic>ALLOYS</topic><topic>BOUNDARY CONDITIONS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>ELEMENTS</topic><topic>Exact sciences and technology</topic><topic>FLUIDS</topic><topic>KINETICS</topic><topic>LIQUID METALS</topic><topic>LIQUIDS</topic><topic>METALS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physics</topic><topic>SATURATION</topic><topic>SOLIDIFICATION</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>SUPERSATURATION</topic><topic>TRAPPING</topic><topic>VOIDS</topic><toplevel>online_resources</toplevel><creatorcontrib>VAN SICLEN, C. D</creatorcontrib><creatorcontrib>WOLFER, W. G</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VAN SICLEN, C. D</au><au>WOLFER, W. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacancy supersaturation in rapidly solidified metal droplets</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><addtitle>Phys Rev A</addtitle><date>1991-05-15</date><risdate>1991</risdate><volume>43</volume><issue>10</issue><spage>5344</spage><epage>5354</epage><pages>5344-5354</pages><issn>1050-2947</issn><eissn>1094-1622</eissn><coden>PLRAAN</coden><abstract>A self-consistent theory for vacancy entrapment in rapidly solidified metal droplets is presented. Supersaturation occurs when excess (nonequilibrium) vacancies created at the solidification front by the liquid-solid density difference are unable to diffuse back to the interface before the droplet solidifies. The model consists of heat-conduction equations for the liquid and solid phases, a vacancy-diffusion equation, and boundary conditions at the internal and external surfaces that provide coupling between regions and generate the interface dynamics and vacancy entrapment. Solutions to this system of equations are derived in the form of a set of integral equations that incorporate the boundary conditions as integral kernels. These are evaluated numerically to produce temperature and vacancy-concentration profiles for rapidly solidified droplets of various sizes, initial undercoolings, and convective cooling rates. For undercooled, micrometer-sized metal droplets, the model gives vacancy concentrations at solidification far in excess of equilibrium values.</abstract><cop>College Park, MD</cop><pub>American Physical Society</pub><pmid>9904847</pmid><doi>10.1103/PhysRevA.43.5344</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-2947
ispartof Physical review. A, Atomic, molecular, and optical physics, 1991-05, Vol.43 (10), p.5344-5354
issn 1050-2947
1094-1622
language eng
recordid cdi_osti_scitechconnect_5461961
source American Physical Society Journals
subjects 656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-)
ALLOYS
BOUNDARY CONDITIONS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
ELEMENTS
Exact sciences and technology
FLUIDS
KINETICS
LIQUID METALS
LIQUIDS
METALS
PHASE TRANSFORMATIONS
Physics
SATURATION
SOLIDIFICATION
Statistical physics, thermodynamics, and nonlinear dynamical systems
SUPERSATURATION
TRAPPING
VOIDS
title Vacancy supersaturation in rapidly solidified metal droplets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacancy%20supersaturation%20in%20rapidly%20solidified%20metal%20droplets&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=VAN%20SICLEN,%20C.%20D&rft.date=1991-05-15&rft.volume=43&rft.issue=10&rft.spage=5344&rft.epage=5354&rft.pages=5344-5354&rft.issn=1050-2947&rft.eissn=1094-1622&rft.coden=PLRAAN&rft_id=info:doi/10.1103/PhysRevA.43.5344&rft_dat=%3Cproquest_osti_%3E1859265074%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859265074&rft_id=info:pmid/9904847&rfr_iscdi=true