Vacancy supersaturation in rapidly solidified metal droplets
A self-consistent theory for vacancy entrapment in rapidly solidified metal droplets is presented. Supersaturation occurs when excess (nonequilibrium) vacancies created at the solidification front by the liquid-solid density difference are unable to diffuse back to the interface before the droplet s...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 1991-05, Vol.43 (10), p.5344-5354 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5354 |
---|---|
container_issue | 10 |
container_start_page | 5344 |
container_title | Physical review. A, Atomic, molecular, and optical physics |
container_volume | 43 |
creator | VAN SICLEN, C. D WOLFER, W. G |
description | A self-consistent theory for vacancy entrapment in rapidly solidified metal droplets is presented. Supersaturation occurs when excess (nonequilibrium) vacancies created at the solidification front by the liquid-solid density difference are unable to diffuse back to the interface before the droplet solidifies. The model consists of heat-conduction equations for the liquid and solid phases, a vacancy-diffusion equation, and boundary conditions at the internal and external surfaces that provide coupling between regions and generate the interface dynamics and vacancy entrapment. Solutions to this system of equations are derived in the form of a set of integral equations that incorporate the boundary conditions as integral kernels. These are evaluated numerically to produce temperature and vacancy-concentration profiles for rapidly solidified droplets of various sizes, initial undercoolings, and convective cooling rates. For undercooled, micrometer-sized metal droplets, the model gives vacancy concentrations at solidification far in excess of equilibrium values. |
doi_str_mv | 10.1103/PhysRevA.43.5344 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5461961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859265074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-356c1ef31a9227a833347706f6334ced66acd517a06845371311b72fb231adc13</originalsourceid><addsrcrecordid>eNo9kEtLAzEYRYMotVb3boRBXLiZmnc64KYUX1BQRN2GNMnQyLxMMkL_vRk6NptcuOd-iwPAJYJzhCC5e9vuwrv9Xc4pmTNC6RGYIljQHHGMj4fMYI4LKk7BWQjfMD26KCZgUhQpUDEF919Kq0bvstB31gcVe6-ia5vMNZlXnTNVqtrKGVc6a7LaRlVlxrddZWM4ByelqoK9GP8Z-Hx8-Fg95-vXp5fVcp1rwmjMCeMa2ZIgVWAs1IIQQoWAvOQpaGs4V9owJBTkC8qIQAShjcDlBqeJ0YjMwPX-bhuik0G7aPVWt01jdZSMclTwAbrdQ51vf3oboqxd0LaqVGPbPki0YAXmDAqaULhHtW9D8LaUnXe18juJoBy8yn-vkhI5eE2Tq_F6v6mtOQxGkam_GXsVtKpKn6S6cMAYRZQQRv4Ah56APA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859265074</pqid></control><display><type>article</type><title>Vacancy supersaturation in rapidly solidified metal droplets</title><source>American Physical Society Journals</source><creator>VAN SICLEN, C. D ; WOLFER, W. G</creator><creatorcontrib>VAN SICLEN, C. D ; WOLFER, W. G</creatorcontrib><description>A self-consistent theory for vacancy entrapment in rapidly solidified metal droplets is presented. Supersaturation occurs when excess (nonequilibrium) vacancies created at the solidification front by the liquid-solid density difference are unable to diffuse back to the interface before the droplet solidifies. The model consists of heat-conduction equations for the liquid and solid phases, a vacancy-diffusion equation, and boundary conditions at the internal and external surfaces that provide coupling between regions and generate the interface dynamics and vacancy entrapment. Solutions to this system of equations are derived in the form of a set of integral equations that incorporate the boundary conditions as integral kernels. These are evaluated numerically to produce temperature and vacancy-concentration profiles for rapidly solidified droplets of various sizes, initial undercoolings, and convective cooling rates. For undercooled, micrometer-sized metal droplets, the model gives vacancy concentrations at solidification far in excess of equilibrium values.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.43.5344</identifier><identifier>PMID: 9904847</identifier><identifier>CODEN: PLRAAN</identifier><language>eng</language><publisher>College Park, MD: American Physical Society</publisher><subject>656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-) ; ALLOYS ; BOUNDARY CONDITIONS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; ELEMENTS ; Exact sciences and technology ; FLUIDS ; KINETICS ; LIQUID METALS ; LIQUIDS ; METALS ; PHASE TRANSFORMATIONS ; Physics ; SATURATION ; SOLIDIFICATION ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; SUPERSATURATION ; TRAPPING ; VOIDS</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 1991-05, Vol.43 (10), p.5344-5354</ispartof><rights>1992 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-356c1ef31a9227a833347706f6334ced66acd517a06845371311b72fb231adc13</citedby><cites>FETCH-LOGICAL-c354t-356c1ef31a9227a833347706f6334ced66acd517a06845371311b72fb231adc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5414335$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9904847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5461961$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>VAN SICLEN, C. D</creatorcontrib><creatorcontrib>WOLFER, W. G</creatorcontrib><title>Vacancy supersaturation in rapidly solidified metal droplets</title><title>Physical review. A, Atomic, molecular, and optical physics</title><addtitle>Phys Rev A</addtitle><description>A self-consistent theory for vacancy entrapment in rapidly solidified metal droplets is presented. Supersaturation occurs when excess (nonequilibrium) vacancies created at the solidification front by the liquid-solid density difference are unable to diffuse back to the interface before the droplet solidifies. The model consists of heat-conduction equations for the liquid and solid phases, a vacancy-diffusion equation, and boundary conditions at the internal and external surfaces that provide coupling between regions and generate the interface dynamics and vacancy entrapment. Solutions to this system of equations are derived in the form of a set of integral equations that incorporate the boundary conditions as integral kernels. These are evaluated numerically to produce temperature and vacancy-concentration profiles for rapidly solidified droplets of various sizes, initial undercoolings, and convective cooling rates. For undercooled, micrometer-sized metal droplets, the model gives vacancy concentrations at solidification far in excess of equilibrium values.</description><subject>656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-)</subject><subject>ALLOYS</subject><subject>BOUNDARY CONDITIONS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>ELEMENTS</subject><subject>Exact sciences and technology</subject><subject>FLUIDS</subject><subject>KINETICS</subject><subject>LIQUID METALS</subject><subject>LIQUIDS</subject><subject>METALS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physics</subject><subject>SATURATION</subject><subject>SOLIDIFICATION</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>SUPERSATURATION</subject><subject>TRAPPING</subject><subject>VOIDS</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEYRYMotVb3boRBXLiZmnc64KYUX1BQRN2GNMnQyLxMMkL_vRk6NptcuOd-iwPAJYJzhCC5e9vuwrv9Xc4pmTNC6RGYIljQHHGMj4fMYI4LKk7BWQjfMD26KCZgUhQpUDEF919Kq0bvstB31gcVe6-ia5vMNZlXnTNVqtrKGVc6a7LaRlVlxrddZWM4ByelqoK9GP8Z-Hx8-Fg95-vXp5fVcp1rwmjMCeMa2ZIgVWAs1IIQQoWAvOQpaGs4V9owJBTkC8qIQAShjcDlBqeJ0YjMwPX-bhuik0G7aPVWt01jdZSMclTwAbrdQ51vf3oboqxd0LaqVGPbPki0YAXmDAqaULhHtW9D8LaUnXe18juJoBy8yn-vkhI5eE2Tq_F6v6mtOQxGkam_GXsVtKpKn6S6cMAYRZQQRv4Ah56APA</recordid><startdate>19910515</startdate><enddate>19910515</enddate><creator>VAN SICLEN, C. D</creator><creator>WOLFER, W. G</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19910515</creationdate><title>Vacancy supersaturation in rapidly solidified metal droplets</title><author>VAN SICLEN, C. D ; WOLFER, W. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-356c1ef31a9227a833347706f6334ced66acd517a06845371311b72fb231adc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-)</topic><topic>ALLOYS</topic><topic>BOUNDARY CONDITIONS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>ELEMENTS</topic><topic>Exact sciences and technology</topic><topic>FLUIDS</topic><topic>KINETICS</topic><topic>LIQUID METALS</topic><topic>LIQUIDS</topic><topic>METALS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physics</topic><topic>SATURATION</topic><topic>SOLIDIFICATION</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>SUPERSATURATION</topic><topic>TRAPPING</topic><topic>VOIDS</topic><toplevel>online_resources</toplevel><creatorcontrib>VAN SICLEN, C. D</creatorcontrib><creatorcontrib>WOLFER, W. G</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VAN SICLEN, C. D</au><au>WOLFER, W. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacancy supersaturation in rapidly solidified metal droplets</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><addtitle>Phys Rev A</addtitle><date>1991-05-15</date><risdate>1991</risdate><volume>43</volume><issue>10</issue><spage>5344</spage><epage>5354</epage><pages>5344-5354</pages><issn>1050-2947</issn><eissn>1094-1622</eissn><coden>PLRAAN</coden><abstract>A self-consistent theory for vacancy entrapment in rapidly solidified metal droplets is presented. Supersaturation occurs when excess (nonequilibrium) vacancies created at the solidification front by the liquid-solid density difference are unable to diffuse back to the interface before the droplet solidifies. The model consists of heat-conduction equations for the liquid and solid phases, a vacancy-diffusion equation, and boundary conditions at the internal and external surfaces that provide coupling between regions and generate the interface dynamics and vacancy entrapment. Solutions to this system of equations are derived in the form of a set of integral equations that incorporate the boundary conditions as integral kernels. These are evaluated numerically to produce temperature and vacancy-concentration profiles for rapidly solidified droplets of various sizes, initial undercoolings, and convective cooling rates. For undercooled, micrometer-sized metal droplets, the model gives vacancy concentrations at solidification far in excess of equilibrium values.</abstract><cop>College Park, MD</cop><pub>American Physical Society</pub><pmid>9904847</pmid><doi>10.1103/PhysRevA.43.5344</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-2947 |
ispartof | Physical review. A, Atomic, molecular, and optical physics, 1991-05, Vol.43 (10), p.5344-5354 |
issn | 1050-2947 1094-1622 |
language | eng |
recordid | cdi_osti_scitechconnect_5461961 |
source | American Physical Society Journals |
subjects | 656002 - Condensed Matter Physics- General Techniques in Condensed Matter- (1987-) ALLOYS BOUNDARY CONDITIONS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ELEMENTS Exact sciences and technology FLUIDS KINETICS LIQUID METALS LIQUIDS METALS PHASE TRANSFORMATIONS Physics SATURATION SOLIDIFICATION Statistical physics, thermodynamics, and nonlinear dynamical systems SUPERSATURATION TRAPPING VOIDS |
title | Vacancy supersaturation in rapidly solidified metal droplets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacancy%20supersaturation%20in%20rapidly%20solidified%20metal%20droplets&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=VAN%20SICLEN,%20C.%20D&rft.date=1991-05-15&rft.volume=43&rft.issue=10&rft.spage=5344&rft.epage=5354&rft.pages=5344-5354&rft.issn=1050-2947&rft.eissn=1094-1622&rft.coden=PLRAAN&rft_id=info:doi/10.1103/PhysRevA.43.5344&rft_dat=%3Cproquest_osti_%3E1859265074%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859265074&rft_id=info:pmid/9904847&rfr_iscdi=true |