Microstructure and tensile properties of the bismuth-containing 2091 AlLi alloy

Studies show that the ductility and toughness of Al-Li alloys are lower than those of 2024 and 7075 commercial alloys, which are widely used in the aerospace industry. Therefore, it is very important to improve the ductility and toughness of Al-Li alloys for industrial applications. Among the many r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scripta metallurgica et materialia 1994, Vol.30 (1), p.31-36
Hauptverfasser: Zheng, Z.Q., Liu, M.G., Liu, X.Z., Yin, D.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 31
container_title Scripta metallurgica et materialia
container_volume 30
creator Zheng, Z.Q.
Liu, M.G.
Liu, X.Z.
Yin, D.F.
description Studies show that the ductility and toughness of Al-Li alloys are lower than those of 2024 and 7075 commercial alloys, which are widely used in the aerospace industry. Therefore, it is very important to improve the ductility and toughness of Al-Li alloys for industrial applications. Among the many reported reasons for the low ductility and toughness of Al-Li alloys, grain boundary embrittlement resulting from the grain boundary segregation of trace impurity elements is a important reason. There are two approaches to reducing or eliminating the embrittlement, which resulted from the low melting point metals. One is to use high pure materials, containing lower amounts of Na, K and Ca impurities. The other way is to add some alloying elements to change the distribution of these impurities or to form compounds with them in order to reduce the grain boundary segregation of these harmful impurities. Previous work showed that a small addition of bismuth could neutralize the harmful effect of sodium, decrease the trend of cracking during hot rolling, and increase the ductility of Al-Mg alloys. The purpose of this paper is to study the influence of a small addition of bismuth on the microstructure and tensile behavior of a 2091 Al-Li alloy, containing higher sodium content, and to investigate the efficacy of bismuth in reducing the harmful influence of sodium.
doi_str_mv 10.1016/0956-716X(94)90353-0
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5306571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0956716X94903530</els_id><sourcerecordid>0956716X94903530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-79220c4600741c79b1b09012e5c7b51fe791d3f2f416576b18b41dad510f32a83</originalsourceid><addsrcrecordid>eNp9kE1KBDEQhXuh4Dh6AxdBXOiitSr9k85GGAb_YEQQBXchnU6cSE96SDLCnMSreCrPYLctLl0VFO-reu8lyRHCOQKWF8CLMmVYvpzy_IxDVmQp7CSTv_Vesh_CGwAyrGCSPN5b5bsQ_UbFjddEuoZE7YJtNVn7bq19tDqQzpC41KS2YbWJy1R1LkrrrHslFDiSWfv18bmwRLZttz1Ido1sgz78ndPk-frqaX6bLh5u7uazRaoopzFlnFJQeQnAclSM11gDB6S6UKwu0GjGsckMNTmWBStrrOocG9kUCCajssqmyfF4t7dvRVA2arXsnTmtoigy6CnsRfkoGlIGr41Ye7uSfisQxFCYGJoRQzOC5-KnMAE9djJiaxmUbI2XTtnwx2YVZRxYL7scZbrP-W61H2xop3Rj_eCi6ez_f74BhUiBHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microstructure and tensile properties of the bismuth-containing 2091 AlLi alloy</title><source>Alma/SFX Local Collection</source><creator>Zheng, Z.Q. ; Liu, M.G. ; Liu, X.Z. ; Yin, D.F.</creator><creatorcontrib>Zheng, Z.Q. ; Liu, M.G. ; Liu, X.Z. ; Yin, D.F.</creatorcontrib><description>Studies show that the ductility and toughness of Al-Li alloys are lower than those of 2024 and 7075 commercial alloys, which are widely used in the aerospace industry. Therefore, it is very important to improve the ductility and toughness of Al-Li alloys for industrial applications. Among the many reported reasons for the low ductility and toughness of Al-Li alloys, grain boundary embrittlement resulting from the grain boundary segregation of trace impurity elements is a important reason. There are two approaches to reducing or eliminating the embrittlement, which resulted from the low melting point metals. One is to use high pure materials, containing lower amounts of Na, K and Ca impurities. The other way is to add some alloying elements to change the distribution of these impurities or to form compounds with them in order to reduce the grain boundary segregation of these harmful impurities. Previous work showed that a small addition of bismuth could neutralize the harmful effect of sodium, decrease the trend of cracking during hot rolling, and increase the ductility of Al-Mg alloys. The purpose of this paper is to study the influence of a small addition of bismuth on the microstructure and tensile behavior of a 2091 Al-Li alloy, containing higher sodium content, and to investigate the efficacy of bismuth in reducing the harmful influence of sodium.</description><identifier>ISSN: 0956-716X</identifier><identifier>DOI: 10.1016/0956-716X(94)90353-0</identifier><language>eng</language><publisher>Seoul: Elsevier B.V</publisher><subject>360102 - Metals &amp; Alloys- Structure &amp; Phase Studies ; 360103 - Metals &amp; Alloys- Mechanical Properties ; ALLOY SYSTEMS ; ALLOYS ; ALUMINIUM ALLOYS ; Applied sciences ; BISMUTH ALLOYS ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure ; Fatigue, embrittlement, and fracture ; LITHIUM ALLOYS ; MATERIALS SCIENCE ; MECHANICAL PROPERTIES ; Metals. Metallurgy ; MICROSTRUCTURE ; Physics ; TENSILE PROPERTIES ; TERNARY ALLOY SYSTEMS ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Scripta metallurgica et materialia, 1994, Vol.30 (1), p.31-36</ispartof><rights>1993</rights><rights>1994 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-79220c4600741c79b1b09012e5c7b51fe791d3f2f416576b18b41dad510f32a83</citedby><cites>FETCH-LOGICAL-c292t-79220c4600741c79b1b09012e5c7b51fe791d3f2f416576b18b41dad510f32a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3827907$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5306571$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Z.Q.</creatorcontrib><creatorcontrib>Liu, M.G.</creatorcontrib><creatorcontrib>Liu, X.Z.</creatorcontrib><creatorcontrib>Yin, D.F.</creatorcontrib><title>Microstructure and tensile properties of the bismuth-containing 2091 AlLi alloy</title><title>Scripta metallurgica et materialia</title><description>Studies show that the ductility and toughness of Al-Li alloys are lower than those of 2024 and 7075 commercial alloys, which are widely used in the aerospace industry. Therefore, it is very important to improve the ductility and toughness of Al-Li alloys for industrial applications. Among the many reported reasons for the low ductility and toughness of Al-Li alloys, grain boundary embrittlement resulting from the grain boundary segregation of trace impurity elements is a important reason. There are two approaches to reducing or eliminating the embrittlement, which resulted from the low melting point metals. One is to use high pure materials, containing lower amounts of Na, K and Ca impurities. The other way is to add some alloying elements to change the distribution of these impurities or to form compounds with them in order to reduce the grain boundary segregation of these harmful impurities. Previous work showed that a small addition of bismuth could neutralize the harmful effect of sodium, decrease the trend of cracking during hot rolling, and increase the ductility of Al-Mg alloys. The purpose of this paper is to study the influence of a small addition of bismuth on the microstructure and tensile behavior of a 2091 Al-Li alloy, containing higher sodium content, and to investigate the efficacy of bismuth in reducing the harmful influence of sodium.</description><subject>360102 - Metals &amp; Alloys- Structure &amp; Phase Studies</subject><subject>360103 - Metals &amp; Alloys- Mechanical Properties</subject><subject>ALLOY SYSTEMS</subject><subject>ALLOYS</subject><subject>ALUMINIUM ALLOYS</subject><subject>Applied sciences</subject><subject>BISMUTH ALLOYS</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure</subject><subject>Fatigue, embrittlement, and fracture</subject><subject>LITHIUM ALLOYS</subject><subject>MATERIALS SCIENCE</subject><subject>MECHANICAL PROPERTIES</subject><subject>Metals. Metallurgy</subject><subject>MICROSTRUCTURE</subject><subject>Physics</subject><subject>TENSILE PROPERTIES</subject><subject>TERNARY ALLOY SYSTEMS</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>0956-716X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kE1KBDEQhXuh4Dh6AxdBXOiitSr9k85GGAb_YEQQBXchnU6cSE96SDLCnMSreCrPYLctLl0VFO-reu8lyRHCOQKWF8CLMmVYvpzy_IxDVmQp7CSTv_Vesh_CGwAyrGCSPN5b5bsQ_UbFjddEuoZE7YJtNVn7bq19tDqQzpC41KS2YbWJy1R1LkrrrHslFDiSWfv18bmwRLZttz1Ido1sgz78ndPk-frqaX6bLh5u7uazRaoopzFlnFJQeQnAclSM11gDB6S6UKwu0GjGsckMNTmWBStrrOocG9kUCCajssqmyfF4t7dvRVA2arXsnTmtoigy6CnsRfkoGlIGr41Ye7uSfisQxFCYGJoRQzOC5-KnMAE9djJiaxmUbI2XTtnwx2YVZRxYL7scZbrP-W61H2xop3Rj_eCi6ez_f74BhUiBHg</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Zheng, Z.Q.</creator><creator>Liu, M.G.</creator><creator>Liu, X.Z.</creator><creator>Yin, D.F.</creator><general>Elsevier B.V</general><general>Pergamon Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>1994</creationdate><title>Microstructure and tensile properties of the bismuth-containing 2091 AlLi alloy</title><author>Zheng, Z.Q. ; Liu, M.G. ; Liu, X.Z. ; Yin, D.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-79220c4600741c79b1b09012e5c7b51fe791d3f2f416576b18b41dad510f32a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>360102 - Metals &amp; Alloys- Structure &amp; Phase Studies</topic><topic>360103 - Metals &amp; Alloys- Mechanical Properties</topic><topic>ALLOY SYSTEMS</topic><topic>ALLOYS</topic><topic>ALUMINIUM ALLOYS</topic><topic>Applied sciences</topic><topic>BISMUTH ALLOYS</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure</topic><topic>Fatigue, embrittlement, and fracture</topic><topic>LITHIUM ALLOYS</topic><topic>MATERIALS SCIENCE</topic><topic>MECHANICAL PROPERTIES</topic><topic>Metals. Metallurgy</topic><topic>MICROSTRUCTURE</topic><topic>Physics</topic><topic>TENSILE PROPERTIES</topic><topic>TERNARY ALLOY SYSTEMS</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Z.Q.</creatorcontrib><creatorcontrib>Liu, M.G.</creatorcontrib><creatorcontrib>Liu, X.Z.</creatorcontrib><creatorcontrib>Yin, D.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Scripta metallurgica et materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Z.Q.</au><au>Liu, M.G.</au><au>Liu, X.Z.</au><au>Yin, D.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and tensile properties of the bismuth-containing 2091 AlLi alloy</atitle><jtitle>Scripta metallurgica et materialia</jtitle><date>1994</date><risdate>1994</risdate><volume>30</volume><issue>1</issue><spage>31</spage><epage>36</epage><pages>31-36</pages><issn>0956-716X</issn><abstract>Studies show that the ductility and toughness of Al-Li alloys are lower than those of 2024 and 7075 commercial alloys, which are widely used in the aerospace industry. Therefore, it is very important to improve the ductility and toughness of Al-Li alloys for industrial applications. Among the many reported reasons for the low ductility and toughness of Al-Li alloys, grain boundary embrittlement resulting from the grain boundary segregation of trace impurity elements is a important reason. There are two approaches to reducing or eliminating the embrittlement, which resulted from the low melting point metals. One is to use high pure materials, containing lower amounts of Na, K and Ca impurities. The other way is to add some alloying elements to change the distribution of these impurities or to form compounds with them in order to reduce the grain boundary segregation of these harmful impurities. Previous work showed that a small addition of bismuth could neutralize the harmful effect of sodium, decrease the trend of cracking during hot rolling, and increase the ductility of Al-Mg alloys. The purpose of this paper is to study the influence of a small addition of bismuth on the microstructure and tensile behavior of a 2091 Al-Li alloy, containing higher sodium content, and to investigate the efficacy of bismuth in reducing the harmful influence of sodium.</abstract><cop>Seoul</cop><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/0956-716X(94)90353-0</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-716X
ispartof Scripta metallurgica et materialia, 1994, Vol.30 (1), p.31-36
issn 0956-716X
language eng
recordid cdi_osti_scitechconnect_5306571
source Alma/SFX Local Collection
subjects 360102 - Metals & Alloys- Structure & Phase Studies
360103 - Metals & Alloys- Mechanical Properties
ALLOY SYSTEMS
ALLOYS
ALUMINIUM ALLOYS
Applied sciences
BISMUTH ALLOYS
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Fatigue, corrosion fatigue, embrittlement, cracking, fracture and failure
Fatigue, embrittlement, and fracture
LITHIUM ALLOYS
MATERIALS SCIENCE
MECHANICAL PROPERTIES
Metals. Metallurgy
MICROSTRUCTURE
Physics
TENSILE PROPERTIES
TERNARY ALLOY SYSTEMS
Treatment of materials and its effects on microstructure and properties
title Microstructure and tensile properties of the bismuth-containing 2091 AlLi alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20tensile%20properties%20of%20the%20bismuth-containing%202091%20Al%EE%97%B8Li%20alloy&rft.jtitle=Scripta%20metallurgica%20et%20materialia&rft.au=Zheng,%20Z.Q.&rft.date=1994&rft.volume=30&rft.issue=1&rft.spage=31&rft.epage=36&rft.pages=31-36&rft.issn=0956-716X&rft_id=info:doi/10.1016/0956-716X(94)90353-0&rft_dat=%3Celsevier_osti_%3E0956716X94903530%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=0956716X94903530&rfr_iscdi=true