Gravity-driven groundwater flow and slope failure potential: 2. Effects of slope morphology, material properties, and hydraulic heterogeneity

Hillslope morphology, material properties, and hydraulic heterogeneities influence the role of groundwater flow in provoking slope instability. We evaluate these influences quantitatively by employing the elastic effective stress model and Coulomb failure potential concept described in our companion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 1992-03, Vol.28 (3), p.939-950
Hauptverfasser: Reid, Mark E., Iverson, Richard M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 950
container_issue 3
container_start_page 939
container_title Water resources research
container_volume 28
creator Reid, Mark E.
Iverson, Richard M.
description Hillslope morphology, material properties, and hydraulic heterogeneities influence the role of groundwater flow in provoking slope instability. We evaluate these influences quantitatively by employing the elastic effective stress model and Coulomb failure potential concept described in our companion paper (Iverson and Reid, this issue). Sensitivity analyses show that of four dimensionless quantities that control model results (i.e., Poisson's ratio, porosity, topographic profile, and hydraulic conductivity contrast), slope profiles and hydraulic conductivity contrasts have the most pronounced and diverse effects on groundwater seepage forces, effective stresses, and slope failure potentials. Gravity‐driven groundwater flow strongly influences the shape of equilibrium hillslopes, which we define as those with uniform near‐surface failure potentials. For homogeneous slopes with no groundwater flow, equilibrium hillslope profiles are straight; but with gravity‐driven flow, equilibrium profiles are concave or convex‐concave, and the largest failure potentials exist near the bases of convex slopes. In heterogeneous slopes, relatively slight hydraulic conductivity contrasts of less than 1 order of magnitude markedly affect the seepage force field and slope failure potential. Maximum effects occur if conductivity contrasts are of four orders of magnitude or more, and large hydraulic gradients commonly result in particularly large failure potentials just upslope from where low‐conductivity layers intersect the ground surface.
doi_str_mv 10.1029/91WR02695
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5246010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18230195</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4834-de9af275b50fc7c2973434480529ac87d9624572b31361cb017fc550e83d377e3</originalsourceid><addsrcrecordid>eNqF0c1uEzEUBeARohKhZcEbWCyQkDqtf8djdihqU0QoUlTUpeV47iQGZ5zaMw3zELwzDlN1h1h54e8c3atbFG8JviCYqktF7leYVkq8KGZEcV5KJdnLYoYxZyVhSr4qXqf0A2PCRSVnxe9FNI-uH8smukfo0CaGoWsOpoeIWh8OyHQNSj7sAbXG-SEC2oceut4Z_xHRC3TVtmD7hEL7xHYh7rfBh814jnbHnizRPuav2DtI538bt2MTzeCdRVvIJGyggzzFWXHSGp_gzdN7Wny_vrqb35TLb4vP80_L0vCa8bIBZVoqxVrg1kpL84qccV5jQZWxtWxURbmQdM0Iq4hdYyJbKwSGmjVMSmCnxbupN6Te6WRdD3ZrQ9flVbSgvMIEZ_R-Qnn4hwFSr3cuWfDedBCGpElNGSZK_B8ySQShx8YPE7QxpBSh1fvodiaOmmB9PJ9-Pl-2l5M9OA_jv6G-X81Xoqp4TpRTwqUefj0nTPypK8lklrcLffvl5utc3i31NfsDbUarbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13715120</pqid></control><display><type>article</type><title>Gravity-driven groundwater flow and slope failure potential: 2. Effects of slope morphology, material properties, and hydraulic heterogeneity</title><source>Access via Wiley Online Library</source><creator>Reid, Mark E. ; Iverson, Richard M.</creator><creatorcontrib>Reid, Mark E. ; Iverson, Richard M.</creatorcontrib><description>Hillslope morphology, material properties, and hydraulic heterogeneities influence the role of groundwater flow in provoking slope instability. We evaluate these influences quantitatively by employing the elastic effective stress model and Coulomb failure potential concept described in our companion paper (Iverson and Reid, this issue). Sensitivity analyses show that of four dimensionless quantities that control model results (i.e., Poisson's ratio, porosity, topographic profile, and hydraulic conductivity contrast), slope profiles and hydraulic conductivity contrasts have the most pronounced and diverse effects on groundwater seepage forces, effective stresses, and slope failure potentials. Gravity‐driven groundwater flow strongly influences the shape of equilibrium hillslopes, which we define as those with uniform near‐surface failure potentials. For homogeneous slopes with no groundwater flow, equilibrium hillslope profiles are straight; but with gravity‐driven flow, equilibrium profiles are concave or convex‐concave, and the largest failure potentials exist near the bases of convex slopes. In heterogeneous slopes, relatively slight hydraulic conductivity contrasts of less than 1 order of magnitude markedly affect the seepage force field and slope failure potential. Maximum effects occur if conductivity contrasts are of four orders of magnitude or more, and large hydraulic gradients commonly result in particularly large failure potentials just upslope from where low‐conductivity layers intersect the ground surface.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/91WR02695</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>540210 - Environment, Terrestrial- Basic Studies- (1990-) ; 580000 - Geosciences ; ENVIRONMENTAL SCIENCES ; ENVIRONMENTAL TRANSPORT ; FLOW MODELS ; FLUID FLOW ; GEOLOGY ; GEOSCIENCES ; GROUND WATER ; HYDRAULIC CONDUCTIVITY ; HYDROGEN COMPOUNDS ; HYDROLOGY ; MASS TRANSFER ; MATHEMATICAL MODELS ; OXYGEN COMPOUNDS ; SLOPE STABILITY ; STABILITY ; TOPOGRAPHY ; WATER</subject><ispartof>Water resources research, 1992-03, Vol.28 (3), p.939-950</ispartof><rights>This paper is not subject to U.S. copyright. Published in 1992 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4834-de9af275b50fc7c2973434480529ac87d9624572b31361cb017fc550e83d377e3</citedby><cites>FETCH-LOGICAL-a4834-de9af275b50fc7c2973434480529ac87d9624572b31361cb017fc550e83d377e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F91WR02695$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F91WR02695$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5246010$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Reid, Mark E.</creatorcontrib><creatorcontrib>Iverson, Richard M.</creatorcontrib><title>Gravity-driven groundwater flow and slope failure potential: 2. Effects of slope morphology, material properties, and hydraulic heterogeneity</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>Hillslope morphology, material properties, and hydraulic heterogeneities influence the role of groundwater flow in provoking slope instability. We evaluate these influences quantitatively by employing the elastic effective stress model and Coulomb failure potential concept described in our companion paper (Iverson and Reid, this issue). Sensitivity analyses show that of four dimensionless quantities that control model results (i.e., Poisson's ratio, porosity, topographic profile, and hydraulic conductivity contrast), slope profiles and hydraulic conductivity contrasts have the most pronounced and diverse effects on groundwater seepage forces, effective stresses, and slope failure potentials. Gravity‐driven groundwater flow strongly influences the shape of equilibrium hillslopes, which we define as those with uniform near‐surface failure potentials. For homogeneous slopes with no groundwater flow, equilibrium hillslope profiles are straight; but with gravity‐driven flow, equilibrium profiles are concave or convex‐concave, and the largest failure potentials exist near the bases of convex slopes. In heterogeneous slopes, relatively slight hydraulic conductivity contrasts of less than 1 order of magnitude markedly affect the seepage force field and slope failure potential. Maximum effects occur if conductivity contrasts are of four orders of magnitude or more, and large hydraulic gradients commonly result in particularly large failure potentials just upslope from where low‐conductivity layers intersect the ground surface.</description><subject>540210 - Environment, Terrestrial- Basic Studies- (1990-)</subject><subject>580000 - Geosciences</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>ENVIRONMENTAL TRANSPORT</subject><subject>FLOW MODELS</subject><subject>FLUID FLOW</subject><subject>GEOLOGY</subject><subject>GEOSCIENCES</subject><subject>GROUND WATER</subject><subject>HYDRAULIC CONDUCTIVITY</subject><subject>HYDROGEN COMPOUNDS</subject><subject>HYDROLOGY</subject><subject>MASS TRANSFER</subject><subject>MATHEMATICAL MODELS</subject><subject>OXYGEN COMPOUNDS</subject><subject>SLOPE STABILITY</subject><subject>STABILITY</subject><subject>TOPOGRAPHY</subject><subject>WATER</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqF0c1uEzEUBeARohKhZcEbWCyQkDqtf8djdihqU0QoUlTUpeV47iQGZ5zaMw3zELwzDlN1h1h54e8c3atbFG8JviCYqktF7leYVkq8KGZEcV5KJdnLYoYxZyVhSr4qXqf0A2PCRSVnxe9FNI-uH8smukfo0CaGoWsOpoeIWh8OyHQNSj7sAbXG-SEC2oceut4Z_xHRC3TVtmD7hEL7xHYh7rfBh814jnbHnizRPuav2DtI538bt2MTzeCdRVvIJGyggzzFWXHSGp_gzdN7Wny_vrqb35TLb4vP80_L0vCa8bIBZVoqxVrg1kpL84qccV5jQZWxtWxURbmQdM0Iq4hdYyJbKwSGmjVMSmCnxbupN6Te6WRdD3ZrQ9flVbSgvMIEZ_R-Qnn4hwFSr3cuWfDedBCGpElNGSZK_B8ySQShx8YPE7QxpBSh1fvodiaOmmB9PJ9-Pl-2l5M9OA_jv6G-X81Xoqp4TpRTwqUefj0nTPypK8lklrcLffvl5utc3i31NfsDbUarbQ</recordid><startdate>199203</startdate><enddate>199203</enddate><creator>Reid, Mark E.</creator><creator>Iverson, Richard M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>KL.</scope><scope>OTOTI</scope></search><sort><creationdate>199203</creationdate><title>Gravity-driven groundwater flow and slope failure potential: 2. Effects of slope morphology, material properties, and hydraulic heterogeneity</title><author>Reid, Mark E. ; Iverson, Richard M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4834-de9af275b50fc7c2973434480529ac87d9624572b31361cb017fc550e83d377e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>540210 - Environment, Terrestrial- Basic Studies- (1990-)</topic><topic>580000 - Geosciences</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>ENVIRONMENTAL TRANSPORT</topic><topic>FLOW MODELS</topic><topic>FLUID FLOW</topic><topic>GEOLOGY</topic><topic>GEOSCIENCES</topic><topic>GROUND WATER</topic><topic>HYDRAULIC CONDUCTIVITY</topic><topic>HYDROGEN COMPOUNDS</topic><topic>HYDROLOGY</topic><topic>MASS TRANSFER</topic><topic>MATHEMATICAL MODELS</topic><topic>OXYGEN COMPOUNDS</topic><topic>SLOPE STABILITY</topic><topic>STABILITY</topic><topic>TOPOGRAPHY</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reid, Mark E.</creatorcontrib><creatorcontrib>Iverson, Richard M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reid, Mark E.</au><au>Iverson, Richard M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravity-driven groundwater flow and slope failure potential: 2. Effects of slope morphology, material properties, and hydraulic heterogeneity</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>1992-03</date><risdate>1992</risdate><volume>28</volume><issue>3</issue><spage>939</spage><epage>950</epage><pages>939-950</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Hillslope morphology, material properties, and hydraulic heterogeneities influence the role of groundwater flow in provoking slope instability. We evaluate these influences quantitatively by employing the elastic effective stress model and Coulomb failure potential concept described in our companion paper (Iverson and Reid, this issue). Sensitivity analyses show that of four dimensionless quantities that control model results (i.e., Poisson's ratio, porosity, topographic profile, and hydraulic conductivity contrast), slope profiles and hydraulic conductivity contrasts have the most pronounced and diverse effects on groundwater seepage forces, effective stresses, and slope failure potentials. Gravity‐driven groundwater flow strongly influences the shape of equilibrium hillslopes, which we define as those with uniform near‐surface failure potentials. For homogeneous slopes with no groundwater flow, equilibrium hillslope profiles are straight; but with gravity‐driven flow, equilibrium profiles are concave or convex‐concave, and the largest failure potentials exist near the bases of convex slopes. In heterogeneous slopes, relatively slight hydraulic conductivity contrasts of less than 1 order of magnitude markedly affect the seepage force field and slope failure potential. Maximum effects occur if conductivity contrasts are of four orders of magnitude or more, and large hydraulic gradients commonly result in particularly large failure potentials just upslope from where low‐conductivity layers intersect the ground surface.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/91WR02695</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 1992-03, Vol.28 (3), p.939-950
issn 0043-1397
1944-7973
language eng
recordid cdi_osti_scitechconnect_5246010
source Access via Wiley Online Library
subjects 540210 - Environment, Terrestrial- Basic Studies- (1990-)
580000 - Geosciences
ENVIRONMENTAL SCIENCES
ENVIRONMENTAL TRANSPORT
FLOW MODELS
FLUID FLOW
GEOLOGY
GEOSCIENCES
GROUND WATER
HYDRAULIC CONDUCTIVITY
HYDROGEN COMPOUNDS
HYDROLOGY
MASS TRANSFER
MATHEMATICAL MODELS
OXYGEN COMPOUNDS
SLOPE STABILITY
STABILITY
TOPOGRAPHY
WATER
title Gravity-driven groundwater flow and slope failure potential: 2. Effects of slope morphology, material properties, and hydraulic heterogeneity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravity-driven%20groundwater%20flow%20and%20slope%20failure%20potential:%202.%20Effects%20of%20slope%20morphology,%20material%20properties,%20and%20hydraulic%20heterogeneity&rft.jtitle=Water%20resources%20research&rft.au=Reid,%20Mark%20E.&rft.date=1992-03&rft.volume=28&rft.issue=3&rft.spage=939&rft.epage=950&rft.pages=939-950&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/91WR02695&rft_dat=%3Cproquest_osti_%3E18230195%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13715120&rft_id=info:pmid/&rfr_iscdi=true