Radiophase Development in Hot-Pressed Alkoxide-Derived Titanate Ceramics for Nuclear Waste Stabilization
Phase development as a function of hot‐pressing temperature was studied in alkoxide‐derived titanate‐based ceramics doped with a 10 wt% loading of a sodium‐rich (NAR) and a sodiumpoor (NAP) simulated high‐level waste. Pyrochlore was found to be the most abundant phase in both calcine powders. A pseu...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 1989-06, Vol.72 (6), p.1055-1059 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1059 |
---|---|
container_issue | 6 |
container_start_page | 1055 |
container_title | Journal of the American Ceramic Society |
container_volume | 72 |
creator | Dickson, Fiona J. Mitamura, Hisayoshi White, Timothy J. |
description | Phase development as a function of hot‐pressing temperature was studied in alkoxide‐derived titanate‐based ceramics doped with a 10 wt% loading of a sodium‐rich (NAR) and a sodiumpoor (NAP) simulated high‐level waste. Pyrochlore was found to be the most abundant phase in both calcine powders. A pseudobrookite phase existed metastably at hot‐pressing temperatures between 890° and 920°C. After hot‐pressing at 1100°C, the final phase assemblage for the NAP material consisted of zirconolite, hollandite‐type, perovskite, alloy, and reduced rutile (Magnéli phases). In addition, NAR samples contained hibonite, freudenbergite, and loveringite. Phase development was driven to completion over a very narrow temperature range (50°C), beginning at 870° and 850°C for NAP and NAR, respectively, although full densification was not achieved below 1100°C. Both waste forms exhibited comparable microstructure and aqueous durability. |
doi_str_mv | 10.1111/j.1151-2916.1989.tb06270.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5162062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1298376738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5135-709216b9c1c8cf991b0513230f3f811e849af7ed343865627d7e946412ceb7d93</originalsourceid><addsrcrecordid>eNqVkV9v0zAUxSMEEmXwHaKBeEvxnziOeaJKtw40xsSG9mg5zo3qLrU72x0dnx5HqfbAG3658r0_n6vjk2WnGM1xOp82qTBcEIGrORa1mMcWVYSj-eFFNsPsOHqZzRBCpOA1Qa-zNyFs0jXh5Sxb_1Sdcbu1CpAv4REGt9uCjbmx-YWLxbWHEKDLF8O9O5gOiiV485gatyYqqyLkDXi1NTrkvfP51V4PoHx-p0Ia3UTVmsH8UdE4-zZ71ashwLtjPcl-nZ_dNhfF5Y_V12ZxWWiGKSs4EgRXrdBY17oXArco9QlFPe1rjKEuheo5dLSkdcWS1Y6DKKsSEw0t7wQ9yU4nXReikUGbCHqtnbWgo2S4Iul_EvRxgnbePewhRLk1QcMwKAtuHyRhJUG4HMH3_4Abt_c2GZCYiJryitM6UZ8nSnsXgode7rzZKv8kMZJjTnIjx5zkGIYcc5LHnOQhPf5wXKGCVkPvldUmPCtwOrosE_Zlwn6bAZ7-Y4H8tmjOMGIsSRSThEnpHJ4llL-XyQZn8u5qJZer8-83DUHymv4FAqi1Zg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298376738</pqid></control><display><type>article</type><title>Radiophase Development in Hot-Pressed Alkoxide-Derived Titanate Ceramics for Nuclear Waste Stabilization</title><source>Periodicals Index Online</source><source>Wiley Online Library All Journals</source><creator>Dickson, Fiona J. ; Mitamura, Hisayoshi ; White, Timothy J.</creator><creatorcontrib>Dickson, Fiona J. ; Mitamura, Hisayoshi ; White, Timothy J.</creatorcontrib><description>Phase development as a function of hot‐pressing temperature was studied in alkoxide‐derived titanate‐based ceramics doped with a 10 wt% loading of a sodium‐rich (NAR) and a sodiumpoor (NAP) simulated high‐level waste. Pyrochlore was found to be the most abundant phase in both calcine powders. A pseudobrookite phase existed metastably at hot‐pressing temperatures between 890° and 920°C. After hot‐pressing at 1100°C, the final phase assemblage for the NAP material consisted of zirconolite, hollandite‐type, perovskite, alloy, and reduced rutile (Magnéli phases). In addition, NAR samples contained hibonite, freudenbergite, and loveringite. Phase development was driven to completion over a very narrow temperature range (50°C), beginning at 870° and 850°C for NAP and NAR, respectively, although full densification was not achieved below 1100°C. Both waste forms exhibited comparable microstructure and aqueous durability.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1989.tb06270.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>052001 - Nuclear Fuels- Waste Processing ; 360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies ; alkoxide ; ALKOXIDES ; ALLOYS ; Applied sciences ; Building materials. Ceramics. Glasses ; CALCINED WASTES ; Ceramic industries ; CERAMICS ; Chemical industry and chemicals ; CRYSTAL DOPING ; CRYSTAL STRUCTURE ; Exact sciences and technology ; FABRICATION ; HIGH-LEVEL RADIOACTIVE WASTES ; HOT PRESSING ; MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES ; MATERIALS ; MATERIALS SCIENCE ; MATERIALS WORKING ; MICROSTRUCTURE ; MINERALS ; nuclear materials ; OXYGEN COMPOUNDS ; PHASE STUDIES ; phases ; PRESSING ; PYROCHLORE ; RADIOACTIVE MATERIALS ; RADIOACTIVE WASTES ; sodium ; SODIUM ADDITIONS ; SODIUM ALLOYS ; STABILIZATION ; Technical ceramics ; TEMPERATURE DEPENDENCE ; TITANATES ; TITANIUM COMPOUNDS ; TRANSITION ELEMENT COMPOUNDS ; VERY HIGH TEMPERATURE ; WASTE FORMS ; WASTES</subject><ispartof>Journal of the American Ceramic Society, 1989-06, Vol.72 (6), p.1055-1059</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5135-709216b9c1c8cf991b0513230f3f811e849af7ed343865627d7e946412ceb7d93</citedby><cites>FETCH-LOGICAL-c5135-709216b9c1c8cf991b0513230f3f811e849af7ed343865627d7e946412ceb7d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1989.tb06270.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1989.tb06270.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27869,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7356274$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5162062$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dickson, Fiona J.</creatorcontrib><creatorcontrib>Mitamura, Hisayoshi</creatorcontrib><creatorcontrib>White, Timothy J.</creatorcontrib><title>Radiophase Development in Hot-Pressed Alkoxide-Derived Titanate Ceramics for Nuclear Waste Stabilization</title><title>Journal of the American Ceramic Society</title><description>Phase development as a function of hot‐pressing temperature was studied in alkoxide‐derived titanate‐based ceramics doped with a 10 wt% loading of a sodium‐rich (NAR) and a sodiumpoor (NAP) simulated high‐level waste. Pyrochlore was found to be the most abundant phase in both calcine powders. A pseudobrookite phase existed metastably at hot‐pressing temperatures between 890° and 920°C. After hot‐pressing at 1100°C, the final phase assemblage for the NAP material consisted of zirconolite, hollandite‐type, perovskite, alloy, and reduced rutile (Magnéli phases). In addition, NAR samples contained hibonite, freudenbergite, and loveringite. Phase development was driven to completion over a very narrow temperature range (50°C), beginning at 870° and 850°C for NAP and NAR, respectively, although full densification was not achieved below 1100°C. Both waste forms exhibited comparable microstructure and aqueous durability.</description><subject>052001 - Nuclear Fuels- Waste Processing</subject><subject>360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies</subject><subject>alkoxide</subject><subject>ALKOXIDES</subject><subject>ALLOYS</subject><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>CALCINED WASTES</subject><subject>Ceramic industries</subject><subject>CERAMICS</subject><subject>Chemical industry and chemicals</subject><subject>CRYSTAL DOPING</subject><subject>CRYSTAL STRUCTURE</subject><subject>Exact sciences and technology</subject><subject>FABRICATION</subject><subject>HIGH-LEVEL RADIOACTIVE WASTES</subject><subject>HOT PRESSING</subject><subject>MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES</subject><subject>MATERIALS</subject><subject>MATERIALS SCIENCE</subject><subject>MATERIALS WORKING</subject><subject>MICROSTRUCTURE</subject><subject>MINERALS</subject><subject>nuclear materials</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHASE STUDIES</subject><subject>phases</subject><subject>PRESSING</subject><subject>PYROCHLORE</subject><subject>RADIOACTIVE MATERIALS</subject><subject>RADIOACTIVE WASTES</subject><subject>sodium</subject><subject>SODIUM ADDITIONS</subject><subject>SODIUM ALLOYS</subject><subject>STABILIZATION</subject><subject>Technical ceramics</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TITANATES</subject><subject>TITANIUM COMPOUNDS</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>VERY HIGH TEMPERATURE</subject><subject>WASTE FORMS</subject><subject>WASTES</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkV9v0zAUxSMEEmXwHaKBeEvxnziOeaJKtw40xsSG9mg5zo3qLrU72x0dnx5HqfbAG3658r0_n6vjk2WnGM1xOp82qTBcEIGrORa1mMcWVYSj-eFFNsPsOHqZzRBCpOA1Qa-zNyFs0jXh5Sxb_1Sdcbu1CpAv4REGt9uCjbmx-YWLxbWHEKDLF8O9O5gOiiV485gatyYqqyLkDXi1NTrkvfP51V4PoHx-p0Ia3UTVmsH8UdE4-zZ71ashwLtjPcl-nZ_dNhfF5Y_V12ZxWWiGKSs4EgRXrdBY17oXArco9QlFPe1rjKEuheo5dLSkdcWS1Y6DKKsSEw0t7wQ9yU4nXReikUGbCHqtnbWgo2S4Iul_EvRxgnbePewhRLk1QcMwKAtuHyRhJUG4HMH3_4Abt_c2GZCYiJryitM6UZ8nSnsXgode7rzZKv8kMZJjTnIjx5zkGIYcc5LHnOQhPf5wXKGCVkPvldUmPCtwOrosE_Zlwn6bAZ7-Y4H8tmjOMGIsSRSThEnpHJ4llL-XyQZn8u5qJZer8-83DUHymv4FAqi1Zg</recordid><startdate>198906</startdate><enddate>198906</enddate><creator>Dickson, Fiona J.</creator><creator>Mitamura, Hisayoshi</creator><creator>White, Timothy J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>198906</creationdate><title>Radiophase Development in Hot-Pressed Alkoxide-Derived Titanate Ceramics for Nuclear Waste Stabilization</title><author>Dickson, Fiona J. ; Mitamura, Hisayoshi ; White, Timothy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5135-709216b9c1c8cf991b0513230f3f811e849af7ed343865627d7e946412ceb7d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>052001 - Nuclear Fuels- Waste Processing</topic><topic>360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies</topic><topic>alkoxide</topic><topic>ALKOXIDES</topic><topic>ALLOYS</topic><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>CALCINED WASTES</topic><topic>Ceramic industries</topic><topic>CERAMICS</topic><topic>Chemical industry and chemicals</topic><topic>CRYSTAL DOPING</topic><topic>CRYSTAL STRUCTURE</topic><topic>Exact sciences and technology</topic><topic>FABRICATION</topic><topic>HIGH-LEVEL RADIOACTIVE WASTES</topic><topic>HOT PRESSING</topic><topic>MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES</topic><topic>MATERIALS</topic><topic>MATERIALS SCIENCE</topic><topic>MATERIALS WORKING</topic><topic>MICROSTRUCTURE</topic><topic>MINERALS</topic><topic>nuclear materials</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHASE STUDIES</topic><topic>phases</topic><topic>PRESSING</topic><topic>PYROCHLORE</topic><topic>RADIOACTIVE MATERIALS</topic><topic>RADIOACTIVE WASTES</topic><topic>sodium</topic><topic>SODIUM ADDITIONS</topic><topic>SODIUM ALLOYS</topic><topic>STABILIZATION</topic><topic>Technical ceramics</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TITANATES</topic><topic>TITANIUM COMPOUNDS</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>VERY HIGH TEMPERATURE</topic><topic>WASTE FORMS</topic><topic>WASTES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dickson, Fiona J.</creatorcontrib><creatorcontrib>Mitamura, Hisayoshi</creatorcontrib><creatorcontrib>White, Timothy J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dickson, Fiona J.</au><au>Mitamura, Hisayoshi</au><au>White, Timothy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiophase Development in Hot-Pressed Alkoxide-Derived Titanate Ceramics for Nuclear Waste Stabilization</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1989-06</date><risdate>1989</risdate><volume>72</volume><issue>6</issue><spage>1055</spage><epage>1059</epage><pages>1055-1059</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Phase development as a function of hot‐pressing temperature was studied in alkoxide‐derived titanate‐based ceramics doped with a 10 wt% loading of a sodium‐rich (NAR) and a sodiumpoor (NAP) simulated high‐level waste. Pyrochlore was found to be the most abundant phase in both calcine powders. A pseudobrookite phase existed metastably at hot‐pressing temperatures between 890° and 920°C. After hot‐pressing at 1100°C, the final phase assemblage for the NAP material consisted of zirconolite, hollandite‐type, perovskite, alloy, and reduced rutile (Magnéli phases). In addition, NAR samples contained hibonite, freudenbergite, and loveringite. Phase development was driven to completion over a very narrow temperature range (50°C), beginning at 870° and 850°C for NAP and NAR, respectively, although full densification was not achieved below 1100°C. Both waste forms exhibited comparable microstructure and aqueous durability.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1989.tb06270.x</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 1989-06, Vol.72 (6), p.1055-1059 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_osti_scitechconnect_5162062 |
source | Periodicals Index Online; Wiley Online Library All Journals |
subjects | 052001 - Nuclear Fuels- Waste Processing 360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies alkoxide ALKOXIDES ALLOYS Applied sciences Building materials. Ceramics. Glasses CALCINED WASTES Ceramic industries CERAMICS Chemical industry and chemicals CRYSTAL DOPING CRYSTAL STRUCTURE Exact sciences and technology FABRICATION HIGH-LEVEL RADIOACTIVE WASTES HOT PRESSING MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES MATERIALS MATERIALS SCIENCE MATERIALS WORKING MICROSTRUCTURE MINERALS nuclear materials OXYGEN COMPOUNDS PHASE STUDIES phases PRESSING PYROCHLORE RADIOACTIVE MATERIALS RADIOACTIVE WASTES sodium SODIUM ADDITIONS SODIUM ALLOYS STABILIZATION Technical ceramics TEMPERATURE DEPENDENCE TITANATES TITANIUM COMPOUNDS TRANSITION ELEMENT COMPOUNDS VERY HIGH TEMPERATURE WASTE FORMS WASTES |
title | Radiophase Development in Hot-Pressed Alkoxide-Derived Titanate Ceramics for Nuclear Waste Stabilization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiophase%20Development%20in%20Hot-Pressed%20Alkoxide-Derived%20Titanate%20Ceramics%20for%20Nuclear%20Waste%20Stabilization&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Dickson,%20Fiona%20J.&rft.date=1989-06&rft.volume=72&rft.issue=6&rft.spage=1055&rft.epage=1059&rft.pages=1055-1059&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1989.tb06270.x&rft_dat=%3Cproquest_osti_%3E1298376738%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298376738&rft_id=info:pmid/&rfr_iscdi=true |