Radiophase Development in Hot-Pressed Alkoxide-Derived Titanate Ceramics for Nuclear Waste Stabilization

Phase development as a function of hot‐pressing temperature was studied in alkoxide‐derived titanate‐based ceramics doped with a 10 wt% loading of a sodium‐rich (NAR) and a sodiumpoor (NAP) simulated high‐level waste. Pyrochlore was found to be the most abundant phase in both calcine powders. A pseu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 1989-06, Vol.72 (6), p.1055-1059
Hauptverfasser: Dickson, Fiona J., Mitamura, Hisayoshi, White, Timothy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1059
container_issue 6
container_start_page 1055
container_title Journal of the American Ceramic Society
container_volume 72
creator Dickson, Fiona J.
Mitamura, Hisayoshi
White, Timothy J.
description Phase development as a function of hot‐pressing temperature was studied in alkoxide‐derived titanate‐based ceramics doped with a 10 wt% loading of a sodium‐rich (NAR) and a sodiumpoor (NAP) simulated high‐level waste. Pyrochlore was found to be the most abundant phase in both calcine powders. A pseudobrookite phase existed metastably at hot‐pressing temperatures between 890° and 920°C. After hot‐pressing at 1100°C, the final phase assemblage for the NAP material consisted of zirconolite, hollandite‐type, perovskite, alloy, and reduced rutile (Magnéli phases). In addition, NAR samples contained hibonite, freudenbergite, and loveringite. Phase development was driven to completion over a very narrow temperature range (50°C), beginning at 870° and 850°C for NAP and NAR, respectively, although full densification was not achieved below 1100°C. Both waste forms exhibited comparable microstructure and aqueous durability.
doi_str_mv 10.1111/j.1151-2916.1989.tb06270.x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5162062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1298376738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5135-709216b9c1c8cf991b0513230f3f811e849af7ed343865627d7e946412ceb7d93</originalsourceid><addsrcrecordid>eNqVkV9v0zAUxSMEEmXwHaKBeEvxnziOeaJKtw40xsSG9mg5zo3qLrU72x0dnx5HqfbAG3658r0_n6vjk2WnGM1xOp82qTBcEIGrORa1mMcWVYSj-eFFNsPsOHqZzRBCpOA1Qa-zNyFs0jXh5Sxb_1Sdcbu1CpAv4REGt9uCjbmx-YWLxbWHEKDLF8O9O5gOiiV485gatyYqqyLkDXi1NTrkvfP51V4PoHx-p0Ia3UTVmsH8UdE4-zZ71ashwLtjPcl-nZ_dNhfF5Y_V12ZxWWiGKSs4EgRXrdBY17oXArco9QlFPe1rjKEuheo5dLSkdcWS1Y6DKKsSEw0t7wQ9yU4nXReikUGbCHqtnbWgo2S4Iul_EvRxgnbePewhRLk1QcMwKAtuHyRhJUG4HMH3_4Abt_c2GZCYiJryitM6UZ8nSnsXgode7rzZKv8kMZJjTnIjx5zkGIYcc5LHnOQhPf5wXKGCVkPvldUmPCtwOrosE_Zlwn6bAZ7-Y4H8tmjOMGIsSRSThEnpHJ4llL-XyQZn8u5qJZer8-83DUHymv4FAqi1Zg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298376738</pqid></control><display><type>article</type><title>Radiophase Development in Hot-Pressed Alkoxide-Derived Titanate Ceramics for Nuclear Waste Stabilization</title><source>Periodicals Index Online</source><source>Wiley Online Library All Journals</source><creator>Dickson, Fiona J. ; Mitamura, Hisayoshi ; White, Timothy J.</creator><creatorcontrib>Dickson, Fiona J. ; Mitamura, Hisayoshi ; White, Timothy J.</creatorcontrib><description>Phase development as a function of hot‐pressing temperature was studied in alkoxide‐derived titanate‐based ceramics doped with a 10 wt% loading of a sodium‐rich (NAR) and a sodiumpoor (NAP) simulated high‐level waste. Pyrochlore was found to be the most abundant phase in both calcine powders. A pseudobrookite phase existed metastably at hot‐pressing temperatures between 890° and 920°C. After hot‐pressing at 1100°C, the final phase assemblage for the NAP material consisted of zirconolite, hollandite‐type, perovskite, alloy, and reduced rutile (Magnéli phases). In addition, NAR samples contained hibonite, freudenbergite, and loveringite. Phase development was driven to completion over a very narrow temperature range (50°C), beginning at 870° and 850°C for NAP and NAR, respectively, although full densification was not achieved below 1100°C. Both waste forms exhibited comparable microstructure and aqueous durability.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1989.tb06270.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>052001 - Nuclear Fuels- Waste Processing ; 360202 - Ceramics, Cermets, &amp; Refractories- Structure &amp; Phase Studies ; alkoxide ; ALKOXIDES ; ALLOYS ; Applied sciences ; Building materials. Ceramics. Glasses ; CALCINED WASTES ; Ceramic industries ; CERAMICS ; Chemical industry and chemicals ; CRYSTAL DOPING ; CRYSTAL STRUCTURE ; Exact sciences and technology ; FABRICATION ; HIGH-LEVEL RADIOACTIVE WASTES ; HOT PRESSING ; MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES ; MATERIALS ; MATERIALS SCIENCE ; MATERIALS WORKING ; MICROSTRUCTURE ; MINERALS ; nuclear materials ; OXYGEN COMPOUNDS ; PHASE STUDIES ; phases ; PRESSING ; PYROCHLORE ; RADIOACTIVE MATERIALS ; RADIOACTIVE WASTES ; sodium ; SODIUM ADDITIONS ; SODIUM ALLOYS ; STABILIZATION ; Technical ceramics ; TEMPERATURE DEPENDENCE ; TITANATES ; TITANIUM COMPOUNDS ; TRANSITION ELEMENT COMPOUNDS ; VERY HIGH TEMPERATURE ; WASTE FORMS ; WASTES</subject><ispartof>Journal of the American Ceramic Society, 1989-06, Vol.72 (6), p.1055-1059</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5135-709216b9c1c8cf991b0513230f3f811e849af7ed343865627d7e946412ceb7d93</citedby><cites>FETCH-LOGICAL-c5135-709216b9c1c8cf991b0513230f3f811e849af7ed343865627d7e946412ceb7d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1989.tb06270.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1989.tb06270.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27869,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7356274$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5162062$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dickson, Fiona J.</creatorcontrib><creatorcontrib>Mitamura, Hisayoshi</creatorcontrib><creatorcontrib>White, Timothy J.</creatorcontrib><title>Radiophase Development in Hot-Pressed Alkoxide-Derived Titanate Ceramics for Nuclear Waste Stabilization</title><title>Journal of the American Ceramic Society</title><description>Phase development as a function of hot‐pressing temperature was studied in alkoxide‐derived titanate‐based ceramics doped with a 10 wt% loading of a sodium‐rich (NAR) and a sodiumpoor (NAP) simulated high‐level waste. Pyrochlore was found to be the most abundant phase in both calcine powders. A pseudobrookite phase existed metastably at hot‐pressing temperatures between 890° and 920°C. After hot‐pressing at 1100°C, the final phase assemblage for the NAP material consisted of zirconolite, hollandite‐type, perovskite, alloy, and reduced rutile (Magnéli phases). In addition, NAR samples contained hibonite, freudenbergite, and loveringite. Phase development was driven to completion over a very narrow temperature range (50°C), beginning at 870° and 850°C for NAP and NAR, respectively, although full densification was not achieved below 1100°C. Both waste forms exhibited comparable microstructure and aqueous durability.</description><subject>052001 - Nuclear Fuels- Waste Processing</subject><subject>360202 - Ceramics, Cermets, &amp; Refractories- Structure &amp; Phase Studies</subject><subject>alkoxide</subject><subject>ALKOXIDES</subject><subject>ALLOYS</subject><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>CALCINED WASTES</subject><subject>Ceramic industries</subject><subject>CERAMICS</subject><subject>Chemical industry and chemicals</subject><subject>CRYSTAL DOPING</subject><subject>CRYSTAL STRUCTURE</subject><subject>Exact sciences and technology</subject><subject>FABRICATION</subject><subject>HIGH-LEVEL RADIOACTIVE WASTES</subject><subject>HOT PRESSING</subject><subject>MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES</subject><subject>MATERIALS</subject><subject>MATERIALS SCIENCE</subject><subject>MATERIALS WORKING</subject><subject>MICROSTRUCTURE</subject><subject>MINERALS</subject><subject>nuclear materials</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHASE STUDIES</subject><subject>phases</subject><subject>PRESSING</subject><subject>PYROCHLORE</subject><subject>RADIOACTIVE MATERIALS</subject><subject>RADIOACTIVE WASTES</subject><subject>sodium</subject><subject>SODIUM ADDITIONS</subject><subject>SODIUM ALLOYS</subject><subject>STABILIZATION</subject><subject>Technical ceramics</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TITANATES</subject><subject>TITANIUM COMPOUNDS</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>VERY HIGH TEMPERATURE</subject><subject>WASTE FORMS</subject><subject>WASTES</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkV9v0zAUxSMEEmXwHaKBeEvxnziOeaJKtw40xsSG9mg5zo3qLrU72x0dnx5HqfbAG3658r0_n6vjk2WnGM1xOp82qTBcEIGrORa1mMcWVYSj-eFFNsPsOHqZzRBCpOA1Qa-zNyFs0jXh5Sxb_1Sdcbu1CpAv4REGt9uCjbmx-YWLxbWHEKDLF8O9O5gOiiV485gatyYqqyLkDXi1NTrkvfP51V4PoHx-p0Ia3UTVmsH8UdE4-zZ71ashwLtjPcl-nZ_dNhfF5Y_V12ZxWWiGKSs4EgRXrdBY17oXArco9QlFPe1rjKEuheo5dLSkdcWS1Y6DKKsSEw0t7wQ9yU4nXReikUGbCHqtnbWgo2S4Iul_EvRxgnbePewhRLk1QcMwKAtuHyRhJUG4HMH3_4Abt_c2GZCYiJryitM6UZ8nSnsXgode7rzZKv8kMZJjTnIjx5zkGIYcc5LHnOQhPf5wXKGCVkPvldUmPCtwOrosE_Zlwn6bAZ7-Y4H8tmjOMGIsSRSThEnpHJ4llL-XyQZn8u5qJZer8-83DUHymv4FAqi1Zg</recordid><startdate>198906</startdate><enddate>198906</enddate><creator>Dickson, Fiona J.</creator><creator>Mitamura, Hisayoshi</creator><creator>White, Timothy J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>198906</creationdate><title>Radiophase Development in Hot-Pressed Alkoxide-Derived Titanate Ceramics for Nuclear Waste Stabilization</title><author>Dickson, Fiona J. ; Mitamura, Hisayoshi ; White, Timothy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5135-709216b9c1c8cf991b0513230f3f811e849af7ed343865627d7e946412ceb7d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>052001 - Nuclear Fuels- Waste Processing</topic><topic>360202 - Ceramics, Cermets, &amp; Refractories- Structure &amp; Phase Studies</topic><topic>alkoxide</topic><topic>ALKOXIDES</topic><topic>ALLOYS</topic><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>CALCINED WASTES</topic><topic>Ceramic industries</topic><topic>CERAMICS</topic><topic>Chemical industry and chemicals</topic><topic>CRYSTAL DOPING</topic><topic>CRYSTAL STRUCTURE</topic><topic>Exact sciences and technology</topic><topic>FABRICATION</topic><topic>HIGH-LEVEL RADIOACTIVE WASTES</topic><topic>HOT PRESSING</topic><topic>MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES</topic><topic>MATERIALS</topic><topic>MATERIALS SCIENCE</topic><topic>MATERIALS WORKING</topic><topic>MICROSTRUCTURE</topic><topic>MINERALS</topic><topic>nuclear materials</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHASE STUDIES</topic><topic>phases</topic><topic>PRESSING</topic><topic>PYROCHLORE</topic><topic>RADIOACTIVE MATERIALS</topic><topic>RADIOACTIVE WASTES</topic><topic>sodium</topic><topic>SODIUM ADDITIONS</topic><topic>SODIUM ALLOYS</topic><topic>STABILIZATION</topic><topic>Technical ceramics</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TITANATES</topic><topic>TITANIUM COMPOUNDS</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>VERY HIGH TEMPERATURE</topic><topic>WASTE FORMS</topic><topic>WASTES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dickson, Fiona J.</creatorcontrib><creatorcontrib>Mitamura, Hisayoshi</creatorcontrib><creatorcontrib>White, Timothy J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dickson, Fiona J.</au><au>Mitamura, Hisayoshi</au><au>White, Timothy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiophase Development in Hot-Pressed Alkoxide-Derived Titanate Ceramics for Nuclear Waste Stabilization</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1989-06</date><risdate>1989</risdate><volume>72</volume><issue>6</issue><spage>1055</spage><epage>1059</epage><pages>1055-1059</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Phase development as a function of hot‐pressing temperature was studied in alkoxide‐derived titanate‐based ceramics doped with a 10 wt% loading of a sodium‐rich (NAR) and a sodiumpoor (NAP) simulated high‐level waste. Pyrochlore was found to be the most abundant phase in both calcine powders. A pseudobrookite phase existed metastably at hot‐pressing temperatures between 890° and 920°C. After hot‐pressing at 1100°C, the final phase assemblage for the NAP material consisted of zirconolite, hollandite‐type, perovskite, alloy, and reduced rutile (Magnéli phases). In addition, NAR samples contained hibonite, freudenbergite, and loveringite. Phase development was driven to completion over a very narrow temperature range (50°C), beginning at 870° and 850°C for NAP and NAR, respectively, although full densification was not achieved below 1100°C. Both waste forms exhibited comparable microstructure and aqueous durability.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1989.tb06270.x</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 1989-06, Vol.72 (6), p.1055-1059
issn 0002-7820
1551-2916
language eng
recordid cdi_osti_scitechconnect_5162062
source Periodicals Index Online; Wiley Online Library All Journals
subjects 052001 - Nuclear Fuels- Waste Processing
360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies
alkoxide
ALKOXIDES
ALLOYS
Applied sciences
Building materials. Ceramics. Glasses
CALCINED WASTES
Ceramic industries
CERAMICS
Chemical industry and chemicals
CRYSTAL DOPING
CRYSTAL STRUCTURE
Exact sciences and technology
FABRICATION
HIGH-LEVEL RADIOACTIVE WASTES
HOT PRESSING
MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES
MATERIALS
MATERIALS SCIENCE
MATERIALS WORKING
MICROSTRUCTURE
MINERALS
nuclear materials
OXYGEN COMPOUNDS
PHASE STUDIES
phases
PRESSING
PYROCHLORE
RADIOACTIVE MATERIALS
RADIOACTIVE WASTES
sodium
SODIUM ADDITIONS
SODIUM ALLOYS
STABILIZATION
Technical ceramics
TEMPERATURE DEPENDENCE
TITANATES
TITANIUM COMPOUNDS
TRANSITION ELEMENT COMPOUNDS
VERY HIGH TEMPERATURE
WASTE FORMS
WASTES
title Radiophase Development in Hot-Pressed Alkoxide-Derived Titanate Ceramics for Nuclear Waste Stabilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiophase%20Development%20in%20Hot-Pressed%20Alkoxide-Derived%20Titanate%20Ceramics%20for%20Nuclear%20Waste%20Stabilization&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Dickson,%20Fiona%20J.&rft.date=1989-06&rft.volume=72&rft.issue=6&rft.spage=1055&rft.epage=1059&rft.pages=1055-1059&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1989.tb06270.x&rft_dat=%3Cproquest_osti_%3E1298376738%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298376738&rft_id=info:pmid/&rfr_iscdi=true