Rigorous formulation of quantum transition state theory and its dynamical corrections

We describe a procedure for computing the thermal rate constants for infrequent events that occur in complicated quantum mechanical systems. Following the ideas of Gillan, the procedure focuses on the equilibrium statistics of the centroids for the imaginary time quantum paths. We argue that the ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1989-12, Vol.91 (12), p.7749-7760
Hauptverfasser: VOTH, G. A, CHANDLER, D, MILLER, W. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7760
container_issue 12
container_start_page 7749
container_title The Journal of chemical physics
container_volume 91
creator VOTH, G. A
CHANDLER, D
MILLER, W. H
description We describe a procedure for computing the thermal rate constants for infrequent events that occur in complicated quantum mechanical systems. Following the ideas of Gillan, the procedure focuses on the equilibrium statistics of the centroids for the imaginary time quantum paths. We argue that the imaginary time statistics can be used to efficiently bias Monte Carlo sampling of the real time reaction dynamics. Consideration of imaginary time paths or equilibrium statistics alone leads to a quantum transition state theory. Analytical versions of this transition state theory are developed with the aid of a variational principle. Numerical applications of the quantum transition state theory are given for the one-dimensional Eckart barrier problem and for the nonseparable two-dimensional collinear H2+H reaction. Remarkably accurate results are obtained. The quantum transition state theory we describe provides a rigorous basis and generalizes algorithms recently employed to treat electron transfer and also ionization in polar media.
doi_str_mv 10.1063/1.457242
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5145950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>6706011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c8ce1c198e8447397d57b5d30ea45322543f7a3cbdc5eb794b245db1260788ad3</originalsourceid><addsrcrecordid>eNo90E1LxDAQBuAgCq6r4E8I4sFL18lX0xxl8QsWBHHPIU1TN9I2a5Ie9t_bteJpYHgY5n0RuiawIlCye7LiQlJOT9CCQKUKWSo4RQsASgpVQnmOLlL6AgAyqQXavvvPEMOYcBtiP3Ym-zDg0OLv0Qx57HGOZkj-d5uyyQ7nnQvxgM3QYJ8Tbg6D6b01HbYhRmePMl2is9Z0yV39zSXaPj1-rF-Kzdvz6_phU1jGZS5sZR2xRFWu4lwyJRsha9EwcIYLRqngrJWG2bqxwtVS8Zpy0dSEliCryjRsiW7muyFlr5P12dmdDcMw_aEF4UIJmNDdjGwMKUXX6n30vYkHTUAfO9NEz51N9Hame5OmSO2U3fr070sJJRDCfgCD9mua</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rigorous formulation of quantum transition state theory and its dynamical corrections</title><source>AIP Digital Archive</source><creator>VOTH, G. A ; CHANDLER, D ; MILLER, W. H</creator><creatorcontrib>VOTH, G. A ; CHANDLER, D ; MILLER, W. H</creatorcontrib><description>We describe a procedure for computing the thermal rate constants for infrequent events that occur in complicated quantum mechanical systems. Following the ideas of Gillan, the procedure focuses on the equilibrium statistics of the centroids for the imaginary time quantum paths. We argue that the imaginary time statistics can be used to efficiently bias Monte Carlo sampling of the real time reaction dynamics. Consideration of imaginary time paths or equilibrium statistics alone leads to a quantum transition state theory. Analytical versions of this transition state theory are developed with the aid of a variational principle. Numerical applications of the quantum transition state theory are given for the one-dimensional Eckart barrier problem and for the nonseparable two-dimensional collinear H2+H reaction. Remarkably accurate results are obtained. The quantum transition state theory we describe provides a rigorous basis and generalizes algorithms recently employed to treat electron transfer and also ionization in polar media.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.457242</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>400201 - Chemical &amp; Physicochemical Properties ; ALGORITHMS ; Atomic and molecular collision processes and interactions ; Atomic and molecular physics ; CHEMICAL REACTION KINETICS ; ELECTRON TRANSFER ; Exact sciences and technology ; General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.) ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; IONIZATION ; KINETICS ; MATHEMATICAL LOGIC ; MECHANICS ; Physics ; QUANTUM MECHANICS ; REACTION KINETICS</subject><ispartof>The Journal of chemical physics, 1989-12, Vol.91 (12), p.7749-7760</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c8ce1c198e8447397d57b5d30ea45322543f7a3cbdc5eb794b245db1260788ad3</citedby><cites>FETCH-LOGICAL-c347t-c8ce1c198e8447397d57b5d30ea45322543f7a3cbdc5eb794b245db1260788ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6706011$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5145950$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>VOTH, G. A</creatorcontrib><creatorcontrib>CHANDLER, D</creatorcontrib><creatorcontrib>MILLER, W. H</creatorcontrib><title>Rigorous formulation of quantum transition state theory and its dynamical corrections</title><title>The Journal of chemical physics</title><description>We describe a procedure for computing the thermal rate constants for infrequent events that occur in complicated quantum mechanical systems. Following the ideas of Gillan, the procedure focuses on the equilibrium statistics of the centroids for the imaginary time quantum paths. We argue that the imaginary time statistics can be used to efficiently bias Monte Carlo sampling of the real time reaction dynamics. Consideration of imaginary time paths or equilibrium statistics alone leads to a quantum transition state theory. Analytical versions of this transition state theory are developed with the aid of a variational principle. Numerical applications of the quantum transition state theory are given for the one-dimensional Eckart barrier problem and for the nonseparable two-dimensional collinear H2+H reaction. Remarkably accurate results are obtained. The quantum transition state theory we describe provides a rigorous basis and generalizes algorithms recently employed to treat electron transfer and also ionization in polar media.</description><subject>400201 - Chemical &amp; Physicochemical Properties</subject><subject>ALGORITHMS</subject><subject>Atomic and molecular collision processes and interactions</subject><subject>Atomic and molecular physics</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>ELECTRON TRANSFER</subject><subject>Exact sciences and technology</subject><subject>General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.)</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>IONIZATION</subject><subject>KINETICS</subject><subject>MATHEMATICAL LOGIC</subject><subject>MECHANICS</subject><subject>Physics</subject><subject>QUANTUM MECHANICS</subject><subject>REACTION KINETICS</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNo90E1LxDAQBuAgCq6r4E8I4sFL18lX0xxl8QsWBHHPIU1TN9I2a5Ie9t_bteJpYHgY5n0RuiawIlCye7LiQlJOT9CCQKUKWSo4RQsASgpVQnmOLlL6AgAyqQXavvvPEMOYcBtiP3Ym-zDg0OLv0Qx57HGOZkj-d5uyyQ7nnQvxgM3QYJ8Tbg6D6b01HbYhRmePMl2is9Z0yV39zSXaPj1-rF-Kzdvz6_phU1jGZS5sZR2xRFWu4lwyJRsha9EwcIYLRqngrJWG2bqxwtVS8Zpy0dSEliCryjRsiW7muyFlr5P12dmdDcMw_aEF4UIJmNDdjGwMKUXX6n30vYkHTUAfO9NEz51N9Hame5OmSO2U3fr070sJJRDCfgCD9mua</recordid><startdate>19891215</startdate><enddate>19891215</enddate><creator>VOTH, G. A</creator><creator>CHANDLER, D</creator><creator>MILLER, W. H</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19891215</creationdate><title>Rigorous formulation of quantum transition state theory and its dynamical corrections</title><author>VOTH, G. A ; CHANDLER, D ; MILLER, W. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c8ce1c198e8447397d57b5d30ea45322543f7a3cbdc5eb794b245db1260788ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>400201 - Chemical &amp; Physicochemical Properties</topic><topic>ALGORITHMS</topic><topic>Atomic and molecular collision processes and interactions</topic><topic>Atomic and molecular physics</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>ELECTRON TRANSFER</topic><topic>Exact sciences and technology</topic><topic>General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.)</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>IONIZATION</topic><topic>KINETICS</topic><topic>MATHEMATICAL LOGIC</topic><topic>MECHANICS</topic><topic>Physics</topic><topic>QUANTUM MECHANICS</topic><topic>REACTION KINETICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VOTH, G. A</creatorcontrib><creatorcontrib>CHANDLER, D</creatorcontrib><creatorcontrib>MILLER, W. H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VOTH, G. A</au><au>CHANDLER, D</au><au>MILLER, W. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous formulation of quantum transition state theory and its dynamical corrections</atitle><jtitle>The Journal of chemical physics</jtitle><date>1989-12-15</date><risdate>1989</risdate><volume>91</volume><issue>12</issue><spage>7749</spage><epage>7760</epage><pages>7749-7760</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We describe a procedure for computing the thermal rate constants for infrequent events that occur in complicated quantum mechanical systems. Following the ideas of Gillan, the procedure focuses on the equilibrium statistics of the centroids for the imaginary time quantum paths. We argue that the imaginary time statistics can be used to efficiently bias Monte Carlo sampling of the real time reaction dynamics. Consideration of imaginary time paths or equilibrium statistics alone leads to a quantum transition state theory. Analytical versions of this transition state theory are developed with the aid of a variational principle. Numerical applications of the quantum transition state theory are given for the one-dimensional Eckart barrier problem and for the nonseparable two-dimensional collinear H2+H reaction. Remarkably accurate results are obtained. The quantum transition state theory we describe provides a rigorous basis and generalizes algorithms recently employed to treat electron transfer and also ionization in polar media.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.457242</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1989-12, Vol.91 (12), p.7749-7760
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_5145950
source AIP Digital Archive
subjects 400201 - Chemical & Physicochemical Properties
ALGORITHMS
Atomic and molecular collision processes and interactions
Atomic and molecular physics
CHEMICAL REACTION KINETICS
ELECTRON TRANSFER
Exact sciences and technology
General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.)
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
IONIZATION
KINETICS
MATHEMATICAL LOGIC
MECHANICS
Physics
QUANTUM MECHANICS
REACTION KINETICS
title Rigorous formulation of quantum transition state theory and its dynamical corrections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20formulation%20of%20quantum%20transition%20state%20theory%20and%20its%20dynamical%20corrections&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=VOTH,%20G.%20A&rft.date=1989-12-15&rft.volume=91&rft.issue=12&rft.spage=7749&rft.epage=7760&rft.pages=7749-7760&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.457242&rft_dat=%3Cpascalfrancis_osti_%3E6706011%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true