Macroscopically doped chiral-spin-liquid state
Our previous work on the isolated charge excitations, holons, of the chiral-spin-liquid state is generalized to include a macroscopic number of holons. We propose a specific class of wave functions for multiholon excitations exhibiting 1/2-fractional statistics. The fractional statistics are demonst...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter Condensed matter, 1992, Vol.45 (2), p.993-1012 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1012 |
---|---|
container_issue | 2 |
container_start_page | 993 |
container_title | Physical review. B, Condensed matter |
container_volume | 45 |
creator | ZOU, Z LEVY, J. L LAUGHLIN, R. B |
description | Our previous work on the isolated charge excitations, holons, of the chiral-spin-liquid state is generalized to include a macroscopic number of holons. We propose a specific class of wave functions for multiholon excitations exhibiting 1/2-fractional statistics. The fractional statistics are demonstrated by means of analytic continuation methods, numerical calculations, and U(1) gauge-theory techniques. A Chern-Simons term is derived in a long-wavelength effective action for the holons. The exactness of the fractional statistics follows from the quantization of the coefficient of the Chern-Simons term. This particular class of wave functions seems energetically favorable for the {ital t}-{ital J} Hamiltonian in the small-doping limit for physical {ital J}/{ital t}, while in the large-doping limit the stability of these states requires large {ital J}/{ital t}. An upper bound for the ground-state energy of the {ital t}-{ital J} Hamiltonian within the fractional-statistics basis set is obtained. |
doi_str_mv | 10.1103/PhysRevB.45.993 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5132859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859216495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-3def0e67d8f2a96d7e86eb39bfe77c294df241a45ebad57bfc111521856ad9c43</originalsourceid><addsrcrecordid>eNpN0M9LwzAUB_AgipvTszcZ4sFLu7ymaZujDn_BRBE9hzR5YZGurU0r7L83o1PM5eXweV94X0LOgcYAlC1e11v_ht-3ccpjIdgBmQIVPGK54IdkSiFjERSJmJAT7z9peEkmjskEwg8gZVMSPyvdNV43rdOqqrZz07Ro5nrtOlVFvnV1VLmvwZm571WPp-TIqsrj2X7OyMf93fvyMVq9PDwtb1aRZhz6iBm0FLPcFDZRIjM5FhmWTJQW81wnIjU2SUGlHEtleF5aDQA8gYJnygidshm5HHMb3zvptetRr3VT16h7yYElBRcBXY-o7ZqvAX0vN85rrCpVYzN4GeJEAlkqeKCLke6O9R1a2XZuo7qtBCp3TcrfJmXKZWgybFzsw4dyg-afH6sL4GoPlA_V2U7V2vk_x2kBRXA_fTd8RA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859216495</pqid></control><display><type>article</type><title>Macroscopically doped chiral-spin-liquid state</title><source>American Physical Society Journals</source><creator>ZOU, Z ; LEVY, J. L ; LAUGHLIN, R. B</creator><creatorcontrib>ZOU, Z ; LEVY, J. L ; LAUGHLIN, R. B</creatorcontrib><description>Our previous work on the isolated charge excitations, holons, of the chiral-spin-liquid state is generalized to include a macroscopic number of holons. We propose a specific class of wave functions for multiholon excitations exhibiting 1/2-fractional statistics. The fractional statistics are demonstrated by means of analytic continuation methods, numerical calculations, and U(1) gauge-theory techniques. A Chern-Simons term is derived in a long-wavelength effective action for the holons. The exactness of the fractional statistics follows from the quantization of the coefficient of the Chern-Simons term. This particular class of wave functions seems energetically favorable for the {ital t}-{ital J} Hamiltonian in the small-doping limit for physical {ital J}/{ital t}, while in the large-doping limit the stability of these states requires large {ital J}/{ital t}. An upper bound for the ground-state energy of the {ital t}-{ital J} Hamiltonian within the fractional-statistics basis set is obtained.</description><identifier>ISSN: 0163-1829</identifier><identifier>EISSN: 1095-3795</identifier><identifier>DOI: 10.1103/PhysRevB.45.993</identifier><identifier>PMID: 10001143</identifier><identifier>CODEN: PRBMDO</identifier><language>eng</language><publisher>Woodbury, NY: American Physical Society</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; ELECTRIC CONDUCTIVITY ; ELECTRICAL PROPERTIES ; ENERGY LEVELS ; Exact sciences and technology ; EXCITATION SYSTEMS ; FUNCTIONS ; General theory and models of magnetic ordering ; GROUND STATES ; HAMILTONIANS ; Magnetic properties and materials ; MANY-BODY PROBLEM ; MATHEMATICAL OPERATORS ; PHYSICAL PROPERTIES ; Physics ; QUANTIZATION ; QUANTUM OPERATORS 665000 -- Physics of Condensed Matter-- (1992-) ; Spin-glass and other random models ; SUPERCONDUCTIVITY ; VARIATIONAL METHODS ; WAVE FUNCTIONS</subject><ispartof>Physical review. B, Condensed matter, 1992, Vol.45 (2), p.993-1012</ispartof><rights>1992 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-3def0e67d8f2a96d7e86eb39bfe77c294df241a45ebad57bfc111521856ad9c43</citedby><cites>FETCH-LOGICAL-c351t-3def0e67d8f2a96d7e86eb39bfe77c294df241a45ebad57bfc111521856ad9c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5081814$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10001143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5132859$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>ZOU, Z</creatorcontrib><creatorcontrib>LEVY, J. L</creatorcontrib><creatorcontrib>LAUGHLIN, R. B</creatorcontrib><title>Macroscopically doped chiral-spin-liquid state</title><title>Physical review. B, Condensed matter</title><addtitle>Phys Rev B Condens Matter</addtitle><description>Our previous work on the isolated charge excitations, holons, of the chiral-spin-liquid state is generalized to include a macroscopic number of holons. We propose a specific class of wave functions for multiholon excitations exhibiting 1/2-fractional statistics. The fractional statistics are demonstrated by means of analytic continuation methods, numerical calculations, and U(1) gauge-theory techniques. A Chern-Simons term is derived in a long-wavelength effective action for the holons. The exactness of the fractional statistics follows from the quantization of the coefficient of the Chern-Simons term. This particular class of wave functions seems energetically favorable for the {ital t}-{ital J} Hamiltonian in the small-doping limit for physical {ital J}/{ital t}, while in the large-doping limit the stability of these states requires large {ital J}/{ital t}. An upper bound for the ground-state energy of the {ital t}-{ital J} Hamiltonian within the fractional-statistics basis set is obtained.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ENERGY LEVELS</subject><subject>Exact sciences and technology</subject><subject>EXCITATION SYSTEMS</subject><subject>FUNCTIONS</subject><subject>General theory and models of magnetic ordering</subject><subject>GROUND STATES</subject><subject>HAMILTONIANS</subject><subject>Magnetic properties and materials</subject><subject>MANY-BODY PROBLEM</subject><subject>MATHEMATICAL OPERATORS</subject><subject>PHYSICAL PROPERTIES</subject><subject>Physics</subject><subject>QUANTIZATION</subject><subject>QUANTUM OPERATORS 665000 -- Physics of Condensed Matter-- (1992-)</subject><subject>Spin-glass and other random models</subject><subject>SUPERCONDUCTIVITY</subject><subject>VARIATIONAL METHODS</subject><subject>WAVE FUNCTIONS</subject><issn>0163-1829</issn><issn>1095-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpN0M9LwzAUB_AgipvTszcZ4sFLu7ymaZujDn_BRBE9hzR5YZGurU0r7L83o1PM5eXweV94X0LOgcYAlC1e11v_ht-3ccpjIdgBmQIVPGK54IdkSiFjERSJmJAT7z9peEkmjskEwg8gZVMSPyvdNV43rdOqqrZz07Ro5nrtOlVFvnV1VLmvwZm571WPp-TIqsrj2X7OyMf93fvyMVq9PDwtb1aRZhz6iBm0FLPcFDZRIjM5FhmWTJQW81wnIjU2SUGlHEtleF5aDQA8gYJnygidshm5HHMb3zvptetRr3VT16h7yYElBRcBXY-o7ZqvAX0vN85rrCpVYzN4GeJEAlkqeKCLke6O9R1a2XZuo7qtBCp3TcrfJmXKZWgybFzsw4dyg-afH6sL4GoPlA_V2U7V2vk_x2kBRXA_fTd8RA</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>ZOU, Z</creator><creator>LEVY, J. L</creator><creator>LAUGHLIN, R. B</creator><general>American Physical Society</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>1992</creationdate><title>Macroscopically doped chiral-spin-liquid state</title><author>ZOU, Z ; LEVY, J. L ; LAUGHLIN, R. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-3def0e67d8f2a96d7e86eb39bfe77c294df241a45ebad57bfc111521856ad9c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ENERGY LEVELS</topic><topic>Exact sciences and technology</topic><topic>EXCITATION SYSTEMS</topic><topic>FUNCTIONS</topic><topic>General theory and models of magnetic ordering</topic><topic>GROUND STATES</topic><topic>HAMILTONIANS</topic><topic>Magnetic properties and materials</topic><topic>MANY-BODY PROBLEM</topic><topic>MATHEMATICAL OPERATORS</topic><topic>PHYSICAL PROPERTIES</topic><topic>Physics</topic><topic>QUANTIZATION</topic><topic>QUANTUM OPERATORS 665000 -- Physics of Condensed Matter-- (1992-)</topic><topic>Spin-glass and other random models</topic><topic>SUPERCONDUCTIVITY</topic><topic>VARIATIONAL METHODS</topic><topic>WAVE FUNCTIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZOU, Z</creatorcontrib><creatorcontrib>LEVY, J. L</creatorcontrib><creatorcontrib>LAUGHLIN, R. B</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZOU, Z</au><au>LEVY, J. L</au><au>LAUGHLIN, R. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroscopically doped chiral-spin-liquid state</atitle><jtitle>Physical review. B, Condensed matter</jtitle><addtitle>Phys Rev B Condens Matter</addtitle><date>1992</date><risdate>1992</risdate><volume>45</volume><issue>2</issue><spage>993</spage><epage>1012</epage><pages>993-1012</pages><issn>0163-1829</issn><eissn>1095-3795</eissn><coden>PRBMDO</coden><abstract>Our previous work on the isolated charge excitations, holons, of the chiral-spin-liquid state is generalized to include a macroscopic number of holons. We propose a specific class of wave functions for multiholon excitations exhibiting 1/2-fractional statistics. The fractional statistics are demonstrated by means of analytic continuation methods, numerical calculations, and U(1) gauge-theory techniques. A Chern-Simons term is derived in a long-wavelength effective action for the holons. The exactness of the fractional statistics follows from the quantization of the coefficient of the Chern-Simons term. This particular class of wave functions seems energetically favorable for the {ital t}-{ital J} Hamiltonian in the small-doping limit for physical {ital J}/{ital t}, while in the large-doping limit the stability of these states requires large {ital J}/{ital t}. An upper bound for the ground-state energy of the {ital t}-{ital J} Hamiltonian within the fractional-statistics basis set is obtained.</abstract><cop>Woodbury, NY</cop><pub>American Physical Society</pub><pmid>10001143</pmid><doi>10.1103/PhysRevB.45.993</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-1829 |
ispartof | Physical review. B, Condensed matter, 1992, Vol.45 (2), p.993-1012 |
issn | 0163-1829 1095-3795 |
language | eng |
recordid | cdi_osti_scitechconnect_5132859 |
source | American Physical Society Journals |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Condensed matter: electronic structure, electrical, magnetic, and optical properties ELECTRIC CONDUCTIVITY ELECTRICAL PROPERTIES ENERGY LEVELS Exact sciences and technology EXCITATION SYSTEMS FUNCTIONS General theory and models of magnetic ordering GROUND STATES HAMILTONIANS Magnetic properties and materials MANY-BODY PROBLEM MATHEMATICAL OPERATORS PHYSICAL PROPERTIES Physics QUANTIZATION QUANTUM OPERATORS 665000 -- Physics of Condensed Matter-- (1992-) Spin-glass and other random models SUPERCONDUCTIVITY VARIATIONAL METHODS WAVE FUNCTIONS |
title | Macroscopically doped chiral-spin-liquid state |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroscopically%20doped%20chiral-spin-liquid%20state&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter&rft.au=ZOU,%20Z&rft.date=1992&rft.volume=45&rft.issue=2&rft.spage=993&rft.epage=1012&rft.pages=993-1012&rft.issn=0163-1829&rft.eissn=1095-3795&rft.coden=PRBMDO&rft_id=info:doi/10.1103/PhysRevB.45.993&rft_dat=%3Cproquest_osti_%3E1859216495%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859216495&rft_id=info:pmid/10001143&rfr_iscdi=true |