Macroscopically doped chiral-spin-liquid state

Our previous work on the isolated charge excitations, holons, of the chiral-spin-liquid state is generalized to include a macroscopic number of holons. We propose a specific class of wave functions for multiholon excitations exhibiting 1/2-fractional statistics. The fractional statistics are demonst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter Condensed matter, 1992, Vol.45 (2), p.993-1012
Hauptverfasser: ZOU, Z, LEVY, J. L, LAUGHLIN, R. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1012
container_issue 2
container_start_page 993
container_title Physical review. B, Condensed matter
container_volume 45
creator ZOU, Z
LEVY, J. L
LAUGHLIN, R. B
description Our previous work on the isolated charge excitations, holons, of the chiral-spin-liquid state is generalized to include a macroscopic number of holons. We propose a specific class of wave functions for multiholon excitations exhibiting 1/2-fractional statistics. The fractional statistics are demonstrated by means of analytic continuation methods, numerical calculations, and U(1) gauge-theory techniques. A Chern-Simons term is derived in a long-wavelength effective action for the holons. The exactness of the fractional statistics follows from the quantization of the coefficient of the Chern-Simons term. This particular class of wave functions seems energetically favorable for the {ital t}-{ital J} Hamiltonian in the small-doping limit for physical {ital J}/{ital t}, while in the large-doping limit the stability of these states requires large {ital J}/{ital t}. An upper bound for the ground-state energy of the {ital t}-{ital J} Hamiltonian within the fractional-statistics basis set is obtained.
doi_str_mv 10.1103/PhysRevB.45.993
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5132859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859216495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-3def0e67d8f2a96d7e86eb39bfe77c294df241a45ebad57bfc111521856ad9c43</originalsourceid><addsrcrecordid>eNpN0M9LwzAUB_AgipvTszcZ4sFLu7ymaZujDn_BRBE9hzR5YZGurU0r7L83o1PM5eXweV94X0LOgcYAlC1e11v_ht-3ccpjIdgBmQIVPGK54IdkSiFjERSJmJAT7z9peEkmjskEwg8gZVMSPyvdNV43rdOqqrZz07Ro5nrtOlVFvnV1VLmvwZm571WPp-TIqsrj2X7OyMf93fvyMVq9PDwtb1aRZhz6iBm0FLPcFDZRIjM5FhmWTJQW81wnIjU2SUGlHEtleF5aDQA8gYJnygidshm5HHMb3zvptetRr3VT16h7yYElBRcBXY-o7ZqvAX0vN85rrCpVYzN4GeJEAlkqeKCLke6O9R1a2XZuo7qtBCp3TcrfJmXKZWgybFzsw4dyg-afH6sL4GoPlA_V2U7V2vk_x2kBRXA_fTd8RA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859216495</pqid></control><display><type>article</type><title>Macroscopically doped chiral-spin-liquid state</title><source>American Physical Society Journals</source><creator>ZOU, Z ; LEVY, J. L ; LAUGHLIN, R. B</creator><creatorcontrib>ZOU, Z ; LEVY, J. L ; LAUGHLIN, R. B</creatorcontrib><description>Our previous work on the isolated charge excitations, holons, of the chiral-spin-liquid state is generalized to include a macroscopic number of holons. We propose a specific class of wave functions for multiholon excitations exhibiting 1/2-fractional statistics. The fractional statistics are demonstrated by means of analytic continuation methods, numerical calculations, and U(1) gauge-theory techniques. A Chern-Simons term is derived in a long-wavelength effective action for the holons. The exactness of the fractional statistics follows from the quantization of the coefficient of the Chern-Simons term. This particular class of wave functions seems energetically favorable for the {ital t}-{ital J} Hamiltonian in the small-doping limit for physical {ital J}/{ital t}, while in the large-doping limit the stability of these states requires large {ital J}/{ital t}. An upper bound for the ground-state energy of the {ital t}-{ital J} Hamiltonian within the fractional-statistics basis set is obtained.</description><identifier>ISSN: 0163-1829</identifier><identifier>EISSN: 1095-3795</identifier><identifier>DOI: 10.1103/PhysRevB.45.993</identifier><identifier>PMID: 10001143</identifier><identifier>CODEN: PRBMDO</identifier><language>eng</language><publisher>Woodbury, NY: American Physical Society</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; ELECTRIC CONDUCTIVITY ; ELECTRICAL PROPERTIES ; ENERGY LEVELS ; Exact sciences and technology ; EXCITATION SYSTEMS ; FUNCTIONS ; General theory and models of magnetic ordering ; GROUND STATES ; HAMILTONIANS ; Magnetic properties and materials ; MANY-BODY PROBLEM ; MATHEMATICAL OPERATORS ; PHYSICAL PROPERTIES ; Physics ; QUANTIZATION ; QUANTUM OPERATORS 665000 -- Physics of Condensed Matter-- (1992-) ; Spin-glass and other random models ; SUPERCONDUCTIVITY ; VARIATIONAL METHODS ; WAVE FUNCTIONS</subject><ispartof>Physical review. B, Condensed matter, 1992, Vol.45 (2), p.993-1012</ispartof><rights>1992 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-3def0e67d8f2a96d7e86eb39bfe77c294df241a45ebad57bfc111521856ad9c43</citedby><cites>FETCH-LOGICAL-c351t-3def0e67d8f2a96d7e86eb39bfe77c294df241a45ebad57bfc111521856ad9c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5081814$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10001143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5132859$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>ZOU, Z</creatorcontrib><creatorcontrib>LEVY, J. L</creatorcontrib><creatorcontrib>LAUGHLIN, R. B</creatorcontrib><title>Macroscopically doped chiral-spin-liquid state</title><title>Physical review. B, Condensed matter</title><addtitle>Phys Rev B Condens Matter</addtitle><description>Our previous work on the isolated charge excitations, holons, of the chiral-spin-liquid state is generalized to include a macroscopic number of holons. We propose a specific class of wave functions for multiholon excitations exhibiting 1/2-fractional statistics. The fractional statistics are demonstrated by means of analytic continuation methods, numerical calculations, and U(1) gauge-theory techniques. A Chern-Simons term is derived in a long-wavelength effective action for the holons. The exactness of the fractional statistics follows from the quantization of the coefficient of the Chern-Simons term. This particular class of wave functions seems energetically favorable for the {ital t}-{ital J} Hamiltonian in the small-doping limit for physical {ital J}/{ital t}, while in the large-doping limit the stability of these states requires large {ital J}/{ital t}. An upper bound for the ground-state energy of the {ital t}-{ital J} Hamiltonian within the fractional-statistics basis set is obtained.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ENERGY LEVELS</subject><subject>Exact sciences and technology</subject><subject>EXCITATION SYSTEMS</subject><subject>FUNCTIONS</subject><subject>General theory and models of magnetic ordering</subject><subject>GROUND STATES</subject><subject>HAMILTONIANS</subject><subject>Magnetic properties and materials</subject><subject>MANY-BODY PROBLEM</subject><subject>MATHEMATICAL OPERATORS</subject><subject>PHYSICAL PROPERTIES</subject><subject>Physics</subject><subject>QUANTIZATION</subject><subject>QUANTUM OPERATORS 665000 -- Physics of Condensed Matter-- (1992-)</subject><subject>Spin-glass and other random models</subject><subject>SUPERCONDUCTIVITY</subject><subject>VARIATIONAL METHODS</subject><subject>WAVE FUNCTIONS</subject><issn>0163-1829</issn><issn>1095-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpN0M9LwzAUB_AgipvTszcZ4sFLu7ymaZujDn_BRBE9hzR5YZGurU0r7L83o1PM5eXweV94X0LOgcYAlC1e11v_ht-3ccpjIdgBmQIVPGK54IdkSiFjERSJmJAT7z9peEkmjskEwg8gZVMSPyvdNV43rdOqqrZz07Ro5nrtOlVFvnV1VLmvwZm571WPp-TIqsrj2X7OyMf93fvyMVq9PDwtb1aRZhz6iBm0FLPcFDZRIjM5FhmWTJQW81wnIjU2SUGlHEtleF5aDQA8gYJnygidshm5HHMb3zvptetRr3VT16h7yYElBRcBXY-o7ZqvAX0vN85rrCpVYzN4GeJEAlkqeKCLke6O9R1a2XZuo7qtBCp3TcrfJmXKZWgybFzsw4dyg-afH6sL4GoPlA_V2U7V2vk_x2kBRXA_fTd8RA</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>ZOU, Z</creator><creator>LEVY, J. L</creator><creator>LAUGHLIN, R. B</creator><general>American Physical Society</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>1992</creationdate><title>Macroscopically doped chiral-spin-liquid state</title><author>ZOU, Z ; LEVY, J. L ; LAUGHLIN, R. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-3def0e67d8f2a96d7e86eb39bfe77c294df241a45ebad57bfc111521856ad9c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ENERGY LEVELS</topic><topic>Exact sciences and technology</topic><topic>EXCITATION SYSTEMS</topic><topic>FUNCTIONS</topic><topic>General theory and models of magnetic ordering</topic><topic>GROUND STATES</topic><topic>HAMILTONIANS</topic><topic>Magnetic properties and materials</topic><topic>MANY-BODY PROBLEM</topic><topic>MATHEMATICAL OPERATORS</topic><topic>PHYSICAL PROPERTIES</topic><topic>Physics</topic><topic>QUANTIZATION</topic><topic>QUANTUM OPERATORS 665000 -- Physics of Condensed Matter-- (1992-)</topic><topic>Spin-glass and other random models</topic><topic>SUPERCONDUCTIVITY</topic><topic>VARIATIONAL METHODS</topic><topic>WAVE FUNCTIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZOU, Z</creatorcontrib><creatorcontrib>LEVY, J. L</creatorcontrib><creatorcontrib>LAUGHLIN, R. B</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZOU, Z</au><au>LEVY, J. L</au><au>LAUGHLIN, R. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroscopically doped chiral-spin-liquid state</atitle><jtitle>Physical review. B, Condensed matter</jtitle><addtitle>Phys Rev B Condens Matter</addtitle><date>1992</date><risdate>1992</risdate><volume>45</volume><issue>2</issue><spage>993</spage><epage>1012</epage><pages>993-1012</pages><issn>0163-1829</issn><eissn>1095-3795</eissn><coden>PRBMDO</coden><abstract>Our previous work on the isolated charge excitations, holons, of the chiral-spin-liquid state is generalized to include a macroscopic number of holons. We propose a specific class of wave functions for multiholon excitations exhibiting 1/2-fractional statistics. The fractional statistics are demonstrated by means of analytic continuation methods, numerical calculations, and U(1) gauge-theory techniques. A Chern-Simons term is derived in a long-wavelength effective action for the holons. The exactness of the fractional statistics follows from the quantization of the coefficient of the Chern-Simons term. This particular class of wave functions seems energetically favorable for the {ital t}-{ital J} Hamiltonian in the small-doping limit for physical {ital J}/{ital t}, while in the large-doping limit the stability of these states requires large {ital J}/{ital t}. An upper bound for the ground-state energy of the {ital t}-{ital J} Hamiltonian within the fractional-statistics basis set is obtained.</abstract><cop>Woodbury, NY</cop><pub>American Physical Society</pub><pmid>10001143</pmid><doi>10.1103/PhysRevB.45.993</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-1829
ispartof Physical review. B, Condensed matter, 1992, Vol.45 (2), p.993-1012
issn 0163-1829
1095-3795
language eng
recordid cdi_osti_scitechconnect_5132859
source American Physical Society Journals
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Condensed matter: electronic structure, electrical, magnetic, and optical properties
ELECTRIC CONDUCTIVITY
ELECTRICAL PROPERTIES
ENERGY LEVELS
Exact sciences and technology
EXCITATION SYSTEMS
FUNCTIONS
General theory and models of magnetic ordering
GROUND STATES
HAMILTONIANS
Magnetic properties and materials
MANY-BODY PROBLEM
MATHEMATICAL OPERATORS
PHYSICAL PROPERTIES
Physics
QUANTIZATION
QUANTUM OPERATORS 665000 -- Physics of Condensed Matter-- (1992-)
Spin-glass and other random models
SUPERCONDUCTIVITY
VARIATIONAL METHODS
WAVE FUNCTIONS
title Macroscopically doped chiral-spin-liquid state
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroscopically%20doped%20chiral-spin-liquid%20state&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter&rft.au=ZOU,%20Z&rft.date=1992&rft.volume=45&rft.issue=2&rft.spage=993&rft.epage=1012&rft.pages=993-1012&rft.issn=0163-1829&rft.eissn=1095-3795&rft.coden=PRBMDO&rft_id=info:doi/10.1103/PhysRevB.45.993&rft_dat=%3Cproquest_osti_%3E1859216495%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859216495&rft_id=info:pmid/10001143&rfr_iscdi=true