Synthesis and structural transformation of zirconia aerogels

Zirconia (ZrO[sub 2]) aerogels were prepared by the sol-gel method using zirconium n-propoxide in n-propanol followed by supercritical drying with carbon dioxide. This synthesis, without the use of dopants, formed a high surface area material and stabilized the tetragonal phase at low temperatures....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 1993-07, Vol.5 (7), p.956-969
Hauptverfasser: Ward, David A, Ko, Edmond I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 969
container_issue 7
container_start_page 956
container_title Chemistry of materials
container_volume 5
creator Ward, David A
Ko, Edmond I
description Zirconia (ZrO[sub 2]) aerogels were prepared by the sol-gel method using zirconium n-propoxide in n-propanol followed by supercritical drying with carbon dioxide. This synthesis, without the use of dopants, formed a high surface area material and stabilized the tetragonal phase at low temperatures. By optimizing the water and nitric acid amounts, the authors formed a zirconia aerogel with a surface area of ca. 130 m[sup 2]/g after calcination 773 K for 2 h. The effect of heat treatment on the physical characteristics of the aerogel was determined by nitrogen adsorption, X-ray diffraction, Raman spectroscopy, electron microscopy, and differential thermal analysis. The untreated, highly porous, amorphous aerogel decreased in surface area and pore volume upon heating. By variation of the heat treatment, the zirconia aerogel existed in either a completely amorphous, tetragonal, or monoclinic form at room temperature. In situ X-ray diffraction measurements were used to examine the tetragonal-to-monoclinic phase transformation, which was controlled by embryo formation and growth and was not a simple function of crystallite size. Finally, the time required for gel formation controlled the type of oxide network formed, which in turn dictated the physical characteristics of the aerogel and the number of defects for embryo formation. 53 refs., 22 figs., 2 tabs.
doi_str_mv 10.1021/cm00031a014
format Article
fullrecord <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5114798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_2ZFX82HB_H</sourcerecordid><originalsourceid>FETCH-LOGICAL-a423t-577ec1036bd5008987760769a487df2b13a7419702df605fd531df50bfb55cd83</originalsourceid><addsrcrecordid>eNpt0EFLwzAUB_AgCs7pyS9QRPAg1ZekaVrwosM5YaCwCeIlpGniMrtGkgycn96OyvDg6R3ye-H__gidYrjCQPC1WgEAxRJwtocGmBFIGQDZRwMoSp5mnOWH6CiEJQDuFooBuplt2rjQwYZEtnUSol-ruPaySaKXbTDOr2S0rk2cSb6tV661MpHau3fdhGN0YGQT9MnvHKKX8f18NEmnTw-Po9tpKjNCY8o41woDzau6S1OUBec58LyUWcFrQypMJc9wyYHUJgdmakZxbRhUpmJM1QUdorP-XxeiFUHZqNWii9JqFQXDOOPlFl32SHkXgtdGfHq7kn4jMIhtO-JPO50-7_WnDEo2pjtW2bBbyTChQEnH0p7ZEPXX7ln6D5FzypmYP88EeRu_FmRyJyadv-i9VEEs3dq3XS__BvgBi1B-iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis and structural transformation of zirconia aerogels</title><source>ACS Publications</source><creator>Ward, David A ; Ko, Edmond I</creator><creatorcontrib>Ward, David A ; Ko, Edmond I</creatorcontrib><description>Zirconia (ZrO[sub 2]) aerogels were prepared by the sol-gel method using zirconium n-propoxide in n-propanol followed by supercritical drying with carbon dioxide. This synthesis, without the use of dopants, formed a high surface area material and stabilized the tetragonal phase at low temperatures. By optimizing the water and nitric acid amounts, the authors formed a zirconia aerogel with a surface area of ca. 130 m[sup 2]/g after calcination 773 K for 2 h. The effect of heat treatment on the physical characteristics of the aerogel was determined by nitrogen adsorption, X-ray diffraction, Raman spectroscopy, electron microscopy, and differential thermal analysis. The untreated, highly porous, amorphous aerogel decreased in surface area and pore volume upon heating. By variation of the heat treatment, the zirconia aerogel existed in either a completely amorphous, tetragonal, or monoclinic form at room temperature. In situ X-ray diffraction measurements were used to examine the tetragonal-to-monoclinic phase transformation, which was controlled by embryo formation and growth and was not a simple function of crystallite size. Finally, the time required for gel formation controlled the type of oxide network formed, which in turn dictated the physical characteristics of the aerogel and the number of defects for embryo formation. 53 refs., 22 figs., 2 tabs.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm00031a014</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>360202 - Ceramics, Cermets, &amp; Refractories- Structure &amp; Phase Studies ; 400201 - Chemical &amp; Physicochemical Properties ; CHALCOGENIDES ; CHEMICAL PREPARATION ; Chemistry ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; COLLOIDS ; CRYSTAL LATTICES ; CRYSTAL STRUCTURE ; DISPERSIONS ; Exact sciences and technology ; GELS ; General and physical chemistry ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE ; MONOCLINIC LATTICES ; OXIDES ; OXYGEN COMPOUNDS ; PHASE TRANSFORMATIONS ; SORPTIVE PROPERTIES ; SURFACE PROPERTIES ; SYNTHESIS ; TETRAGONAL LATTICES ; TRANSITION ELEMENT COMPOUNDS ; ZIRCONIUM COMPOUNDS ; ZIRCONIUM OXIDES</subject><ispartof>Chemistry of materials, 1993-07, Vol.5 (7), p.956-969</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a423t-577ec1036bd5008987760769a487df2b13a7419702df605fd531df50bfb55cd83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm00031a014$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm00031a014$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4123032$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5114798$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ward, David A</creatorcontrib><creatorcontrib>Ko, Edmond I</creatorcontrib><title>Synthesis and structural transformation of zirconia aerogels</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Zirconia (ZrO[sub 2]) aerogels were prepared by the sol-gel method using zirconium n-propoxide in n-propanol followed by supercritical drying with carbon dioxide. This synthesis, without the use of dopants, formed a high surface area material and stabilized the tetragonal phase at low temperatures. By optimizing the water and nitric acid amounts, the authors formed a zirconia aerogel with a surface area of ca. 130 m[sup 2]/g after calcination 773 K for 2 h. The effect of heat treatment on the physical characteristics of the aerogel was determined by nitrogen adsorption, X-ray diffraction, Raman spectroscopy, electron microscopy, and differential thermal analysis. The untreated, highly porous, amorphous aerogel decreased in surface area and pore volume upon heating. By variation of the heat treatment, the zirconia aerogel existed in either a completely amorphous, tetragonal, or monoclinic form at room temperature. In situ X-ray diffraction measurements were used to examine the tetragonal-to-monoclinic phase transformation, which was controlled by embryo formation and growth and was not a simple function of crystallite size. Finally, the time required for gel formation controlled the type of oxide network formed, which in turn dictated the physical characteristics of the aerogel and the number of defects for embryo formation. 53 refs., 22 figs., 2 tabs.</description><subject>360202 - Ceramics, Cermets, &amp; Refractories- Structure &amp; Phase Studies</subject><subject>400201 - Chemical &amp; Physicochemical Properties</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL PREPARATION</subject><subject>Chemistry</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>COLLOIDS</subject><subject>CRYSTAL LATTICES</subject><subject>CRYSTAL STRUCTURE</subject><subject>DISPERSIONS</subject><subject>Exact sciences and technology</subject><subject>GELS</subject><subject>General and physical chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><subject>MONOCLINIC LATTICES</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>SORPTIVE PROPERTIES</subject><subject>SURFACE PROPERTIES</subject><subject>SYNTHESIS</subject><subject>TETRAGONAL LATTICES</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>ZIRCONIUM COMPOUNDS</subject><subject>ZIRCONIUM OXIDES</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNpt0EFLwzAUB_AgCs7pyS9QRPAg1ZekaVrwosM5YaCwCeIlpGniMrtGkgycn96OyvDg6R3ye-H__gidYrjCQPC1WgEAxRJwtocGmBFIGQDZRwMoSp5mnOWH6CiEJQDuFooBuplt2rjQwYZEtnUSol-ruPaySaKXbTDOr2S0rk2cSb6tV661MpHau3fdhGN0YGQT9MnvHKKX8f18NEmnTw-Po9tpKjNCY8o41woDzau6S1OUBec58LyUWcFrQypMJc9wyYHUJgdmakZxbRhUpmJM1QUdorP-XxeiFUHZqNWii9JqFQXDOOPlFl32SHkXgtdGfHq7kn4jMIhtO-JPO50-7_WnDEo2pjtW2bBbyTChQEnH0p7ZEPXX7ln6D5FzypmYP88EeRu_FmRyJyadv-i9VEEs3dq3XS__BvgBi1B-iw</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>Ward, David A</creator><creator>Ko, Edmond I</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19930701</creationdate><title>Synthesis and structural transformation of zirconia aerogels</title><author>Ward, David A ; Ko, Edmond I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a423t-577ec1036bd5008987760769a487df2b13a7419702df605fd531df50bfb55cd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>360202 - Ceramics, Cermets, &amp; Refractories- Structure &amp; Phase Studies</topic><topic>400201 - Chemical &amp; Physicochemical Properties</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL PREPARATION</topic><topic>Chemistry</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>COLLOIDS</topic><topic>CRYSTAL LATTICES</topic><topic>CRYSTAL STRUCTURE</topic><topic>DISPERSIONS</topic><topic>Exact sciences and technology</topic><topic>GELS</topic><topic>General and physical chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><topic>MONOCLINIC LATTICES</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>SORPTIVE PROPERTIES</topic><topic>SURFACE PROPERTIES</topic><topic>SYNTHESIS</topic><topic>TETRAGONAL LATTICES</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>ZIRCONIUM COMPOUNDS</topic><topic>ZIRCONIUM OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, David A</creatorcontrib><creatorcontrib>Ko, Edmond I</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, David A</au><au>Ko, Edmond I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and structural transformation of zirconia aerogels</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>1993-07-01</date><risdate>1993</risdate><volume>5</volume><issue>7</issue><spage>956</spage><epage>969</epage><pages>956-969</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Zirconia (ZrO[sub 2]) aerogels were prepared by the sol-gel method using zirconium n-propoxide in n-propanol followed by supercritical drying with carbon dioxide. This synthesis, without the use of dopants, formed a high surface area material and stabilized the tetragonal phase at low temperatures. By optimizing the water and nitric acid amounts, the authors formed a zirconia aerogel with a surface area of ca. 130 m[sup 2]/g after calcination 773 K for 2 h. The effect of heat treatment on the physical characteristics of the aerogel was determined by nitrogen adsorption, X-ray diffraction, Raman spectroscopy, electron microscopy, and differential thermal analysis. The untreated, highly porous, amorphous aerogel decreased in surface area and pore volume upon heating. By variation of the heat treatment, the zirconia aerogel existed in either a completely amorphous, tetragonal, or monoclinic form at room temperature. In situ X-ray diffraction measurements were used to examine the tetragonal-to-monoclinic phase transformation, which was controlled by embryo formation and growth and was not a simple function of crystallite size. Finally, the time required for gel formation controlled the type of oxide network formed, which in turn dictated the physical characteristics of the aerogel and the number of defects for embryo formation. 53 refs., 22 figs., 2 tabs.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/cm00031a014</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 1993-07, Vol.5 (7), p.956-969
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_5114798
source ACS Publications
subjects 360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies
400201 - Chemical & Physicochemical Properties
CHALCOGENIDES
CHEMICAL PREPARATION
Chemistry
Colloidal gels. Colloidal sols
Colloidal state and disperse state
COLLOIDS
CRYSTAL LATTICES
CRYSTAL STRUCTURE
DISPERSIONS
Exact sciences and technology
GELS
General and physical chemistry
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
MONOCLINIC LATTICES
OXIDES
OXYGEN COMPOUNDS
PHASE TRANSFORMATIONS
SORPTIVE PROPERTIES
SURFACE PROPERTIES
SYNTHESIS
TETRAGONAL LATTICES
TRANSITION ELEMENT COMPOUNDS
ZIRCONIUM COMPOUNDS
ZIRCONIUM OXIDES
title Synthesis and structural transformation of zirconia aerogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20structural%20transformation%20of%20zirconia%20aerogels&rft.jtitle=Chemistry%20of%20materials&rft.au=Ward,%20David%20A&rft.date=1993-07-01&rft.volume=5&rft.issue=7&rft.spage=956&rft.epage=969&rft.pages=956-969&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm00031a014&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_2ZFX82HB_H%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true