Synthesis and structural transformation of zirconia aerogels
Zirconia (ZrO[sub 2]) aerogels were prepared by the sol-gel method using zirconium n-propoxide in n-propanol followed by supercritical drying with carbon dioxide. This synthesis, without the use of dopants, formed a high surface area material and stabilized the tetragonal phase at low temperatures....
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 1993-07, Vol.5 (7), p.956-969 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 969 |
---|---|
container_issue | 7 |
container_start_page | 956 |
container_title | Chemistry of materials |
container_volume | 5 |
creator | Ward, David A Ko, Edmond I |
description | Zirconia (ZrO[sub 2]) aerogels were prepared by the sol-gel method using zirconium n-propoxide in n-propanol followed by supercritical drying with carbon dioxide. This synthesis, without the use of dopants, formed a high surface area material and stabilized the tetragonal phase at low temperatures. By optimizing the water and nitric acid amounts, the authors formed a zirconia aerogel with a surface area of ca. 130 m[sup 2]/g after calcination 773 K for 2 h. The effect of heat treatment on the physical characteristics of the aerogel was determined by nitrogen adsorption, X-ray diffraction, Raman spectroscopy, electron microscopy, and differential thermal analysis. The untreated, highly porous, amorphous aerogel decreased in surface area and pore volume upon heating. By variation of the heat treatment, the zirconia aerogel existed in either a completely amorphous, tetragonal, or monoclinic form at room temperature. In situ X-ray diffraction measurements were used to examine the tetragonal-to-monoclinic phase transformation, which was controlled by embryo formation and growth and was not a simple function of crystallite size. Finally, the time required for gel formation controlled the type of oxide network formed, which in turn dictated the physical characteristics of the aerogel and the number of defects for embryo formation. 53 refs., 22 figs., 2 tabs. |
doi_str_mv | 10.1021/cm00031a014 |
format | Article |
fullrecord | <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5114798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_2ZFX82HB_H</sourcerecordid><originalsourceid>FETCH-LOGICAL-a423t-577ec1036bd5008987760769a487df2b13a7419702df605fd531df50bfb55cd83</originalsourceid><addsrcrecordid>eNpt0EFLwzAUB_AgCs7pyS9QRPAg1ZekaVrwosM5YaCwCeIlpGniMrtGkgycn96OyvDg6R3ye-H__gidYrjCQPC1WgEAxRJwtocGmBFIGQDZRwMoSp5mnOWH6CiEJQDuFooBuplt2rjQwYZEtnUSol-ruPaySaKXbTDOr2S0rk2cSb6tV661MpHau3fdhGN0YGQT9MnvHKKX8f18NEmnTw-Po9tpKjNCY8o41woDzau6S1OUBec58LyUWcFrQypMJc9wyYHUJgdmakZxbRhUpmJM1QUdorP-XxeiFUHZqNWii9JqFQXDOOPlFl32SHkXgtdGfHq7kn4jMIhtO-JPO50-7_WnDEo2pjtW2bBbyTChQEnH0p7ZEPXX7ln6D5FzypmYP88EeRu_FmRyJyadv-i9VEEs3dq3XS__BvgBi1B-iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis and structural transformation of zirconia aerogels</title><source>ACS Publications</source><creator>Ward, David A ; Ko, Edmond I</creator><creatorcontrib>Ward, David A ; Ko, Edmond I</creatorcontrib><description>Zirconia (ZrO[sub 2]) aerogels were prepared by the sol-gel method using zirconium n-propoxide in n-propanol followed by supercritical drying with carbon dioxide. This synthesis, without the use of dopants, formed a high surface area material and stabilized the tetragonal phase at low temperatures. By optimizing the water and nitric acid amounts, the authors formed a zirconia aerogel with a surface area of ca. 130 m[sup 2]/g after calcination 773 K for 2 h. The effect of heat treatment on the physical characteristics of the aerogel was determined by nitrogen adsorption, X-ray diffraction, Raman spectroscopy, electron microscopy, and differential thermal analysis. The untreated, highly porous, amorphous aerogel decreased in surface area and pore volume upon heating. By variation of the heat treatment, the zirconia aerogel existed in either a completely amorphous, tetragonal, or monoclinic form at room temperature. In situ X-ray diffraction measurements were used to examine the tetragonal-to-monoclinic phase transformation, which was controlled by embryo formation and growth and was not a simple function of crystallite size. Finally, the time required for gel formation controlled the type of oxide network formed, which in turn dictated the physical characteristics of the aerogel and the number of defects for embryo formation. 53 refs., 22 figs., 2 tabs.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm00031a014</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies ; 400201 - Chemical & Physicochemical Properties ; CHALCOGENIDES ; CHEMICAL PREPARATION ; Chemistry ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; COLLOIDS ; CRYSTAL LATTICES ; CRYSTAL STRUCTURE ; DISPERSIONS ; Exact sciences and technology ; GELS ; General and physical chemistry ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE ; MONOCLINIC LATTICES ; OXIDES ; OXYGEN COMPOUNDS ; PHASE TRANSFORMATIONS ; SORPTIVE PROPERTIES ; SURFACE PROPERTIES ; SYNTHESIS ; TETRAGONAL LATTICES ; TRANSITION ELEMENT COMPOUNDS ; ZIRCONIUM COMPOUNDS ; ZIRCONIUM OXIDES</subject><ispartof>Chemistry of materials, 1993-07, Vol.5 (7), p.956-969</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a423t-577ec1036bd5008987760769a487df2b13a7419702df605fd531df50bfb55cd83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm00031a014$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm00031a014$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4123032$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5114798$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ward, David A</creatorcontrib><creatorcontrib>Ko, Edmond I</creatorcontrib><title>Synthesis and structural transformation of zirconia aerogels</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Zirconia (ZrO[sub 2]) aerogels were prepared by the sol-gel method using zirconium n-propoxide in n-propanol followed by supercritical drying with carbon dioxide. This synthesis, without the use of dopants, formed a high surface area material and stabilized the tetragonal phase at low temperatures. By optimizing the water and nitric acid amounts, the authors formed a zirconia aerogel with a surface area of ca. 130 m[sup 2]/g after calcination 773 K for 2 h. The effect of heat treatment on the physical characteristics of the aerogel was determined by nitrogen adsorption, X-ray diffraction, Raman spectroscopy, electron microscopy, and differential thermal analysis. The untreated, highly porous, amorphous aerogel decreased in surface area and pore volume upon heating. By variation of the heat treatment, the zirconia aerogel existed in either a completely amorphous, tetragonal, or monoclinic form at room temperature. In situ X-ray diffraction measurements were used to examine the tetragonal-to-monoclinic phase transformation, which was controlled by embryo formation and growth and was not a simple function of crystallite size. Finally, the time required for gel formation controlled the type of oxide network formed, which in turn dictated the physical characteristics of the aerogel and the number of defects for embryo formation. 53 refs., 22 figs., 2 tabs.</description><subject>360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies</subject><subject>400201 - Chemical & Physicochemical Properties</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL PREPARATION</subject><subject>Chemistry</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>COLLOIDS</subject><subject>CRYSTAL LATTICES</subject><subject>CRYSTAL STRUCTURE</subject><subject>DISPERSIONS</subject><subject>Exact sciences and technology</subject><subject>GELS</subject><subject>General and physical chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><subject>MONOCLINIC LATTICES</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>SORPTIVE PROPERTIES</subject><subject>SURFACE PROPERTIES</subject><subject>SYNTHESIS</subject><subject>TETRAGONAL LATTICES</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>ZIRCONIUM COMPOUNDS</subject><subject>ZIRCONIUM OXIDES</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNpt0EFLwzAUB_AgCs7pyS9QRPAg1ZekaVrwosM5YaCwCeIlpGniMrtGkgycn96OyvDg6R3ye-H__gidYrjCQPC1WgEAxRJwtocGmBFIGQDZRwMoSp5mnOWH6CiEJQDuFooBuplt2rjQwYZEtnUSol-ruPaySaKXbTDOr2S0rk2cSb6tV661MpHau3fdhGN0YGQT9MnvHKKX8f18NEmnTw-Po9tpKjNCY8o41woDzau6S1OUBec58LyUWcFrQypMJc9wyYHUJgdmakZxbRhUpmJM1QUdorP-XxeiFUHZqNWii9JqFQXDOOPlFl32SHkXgtdGfHq7kn4jMIhtO-JPO50-7_WnDEo2pjtW2bBbyTChQEnH0p7ZEPXX7ln6D5FzypmYP88EeRu_FmRyJyadv-i9VEEs3dq3XS__BvgBi1B-iw</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>Ward, David A</creator><creator>Ko, Edmond I</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19930701</creationdate><title>Synthesis and structural transformation of zirconia aerogels</title><author>Ward, David A ; Ko, Edmond I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a423t-577ec1036bd5008987760769a487df2b13a7419702df605fd531df50bfb55cd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies</topic><topic>400201 - Chemical & Physicochemical Properties</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL PREPARATION</topic><topic>Chemistry</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>COLLOIDS</topic><topic>CRYSTAL LATTICES</topic><topic>CRYSTAL STRUCTURE</topic><topic>DISPERSIONS</topic><topic>Exact sciences and technology</topic><topic>GELS</topic><topic>General and physical chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><topic>MONOCLINIC LATTICES</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>SORPTIVE PROPERTIES</topic><topic>SURFACE PROPERTIES</topic><topic>SYNTHESIS</topic><topic>TETRAGONAL LATTICES</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>ZIRCONIUM COMPOUNDS</topic><topic>ZIRCONIUM OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, David A</creatorcontrib><creatorcontrib>Ko, Edmond I</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, David A</au><au>Ko, Edmond I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and structural transformation of zirconia aerogels</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>1993-07-01</date><risdate>1993</risdate><volume>5</volume><issue>7</issue><spage>956</spage><epage>969</epage><pages>956-969</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Zirconia (ZrO[sub 2]) aerogels were prepared by the sol-gel method using zirconium n-propoxide in n-propanol followed by supercritical drying with carbon dioxide. This synthesis, without the use of dopants, formed a high surface area material and stabilized the tetragonal phase at low temperatures. By optimizing the water and nitric acid amounts, the authors formed a zirconia aerogel with a surface area of ca. 130 m[sup 2]/g after calcination 773 K for 2 h. The effect of heat treatment on the physical characteristics of the aerogel was determined by nitrogen adsorption, X-ray diffraction, Raman spectroscopy, electron microscopy, and differential thermal analysis. The untreated, highly porous, amorphous aerogel decreased in surface area and pore volume upon heating. By variation of the heat treatment, the zirconia aerogel existed in either a completely amorphous, tetragonal, or monoclinic form at room temperature. In situ X-ray diffraction measurements were used to examine the tetragonal-to-monoclinic phase transformation, which was controlled by embryo formation and growth and was not a simple function of crystallite size. Finally, the time required for gel formation controlled the type of oxide network formed, which in turn dictated the physical characteristics of the aerogel and the number of defects for embryo formation. 53 refs., 22 figs., 2 tabs.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/cm00031a014</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 1993-07, Vol.5 (7), p.956-969 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_5114798 |
source | ACS Publications |
subjects | 360202 - Ceramics, Cermets, & Refractories- Structure & Phase Studies 400201 - Chemical & Physicochemical Properties CHALCOGENIDES CHEMICAL PREPARATION Chemistry Colloidal gels. Colloidal sols Colloidal state and disperse state COLLOIDS CRYSTAL LATTICES CRYSTAL STRUCTURE DISPERSIONS Exact sciences and technology GELS General and physical chemistry INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY MATERIALS SCIENCE MONOCLINIC LATTICES OXIDES OXYGEN COMPOUNDS PHASE TRANSFORMATIONS SORPTIVE PROPERTIES SURFACE PROPERTIES SYNTHESIS TETRAGONAL LATTICES TRANSITION ELEMENT COMPOUNDS ZIRCONIUM COMPOUNDS ZIRCONIUM OXIDES |
title | Synthesis and structural transformation of zirconia aerogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20structural%20transformation%20of%20zirconia%20aerogels&rft.jtitle=Chemistry%20of%20materials&rft.au=Ward,%20David%20A&rft.date=1993-07-01&rft.volume=5&rft.issue=7&rft.spage=956&rft.epage=969&rft.pages=956-969&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm00031a014&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_2ZFX82HB_H%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |