Quantum corrections to the potential energy for large amplitude collective motion

We discuss the problem of inclusion of quantum corrections in the semiclassical theory of adiabatic large amplitude collective motion for many-fermion systems. We concentrate on deriving a formula for the leading quantum correction to the classical collective potential energy function in this theory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. C, Nuclear physics Nuclear physics, 1992-01, Vol.45 (1), p.249-260
Hauptverfasser: Walet, NR, Klein, A, Do Dang G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 1
container_start_page 249
container_title Physical review. C, Nuclear physics
container_volume 45
creator Walet, NR
Klein, A
Do Dang G
description We discuss the problem of inclusion of quantum corrections in the semiclassical theory of adiabatic large amplitude collective motion for many-fermion systems. We concentrate on deriving a formula for the leading quantum correction to the classical collective potential energy function in this theory. This is an extension of the usual calculation of the quantum corrections to the static Hartree-Fock energy using the random phase approximation. The answer can be expressed in terms of those solutions of a local random phase approximation that describe oscillations orthogonal to the collective surface. Because of the strict enforcement of the Pauli principle, however, the answer differs from the usual quasiboson approximation, yielding the correct ground-state corrrelation energy for a static solution to the Hartree-Fock equations. The result is applied, approximately, to help improve a previous treatment of the low energy spectrum of {sup 28}Si.
doi_str_mv 10.1103/PhysRevC.45.249
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5106486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859285341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-3e3576729b5a1ea74b8dd792378fa410103fe68a3fb9e1538ee97bf5b6e73b2f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRaq2ePQmLJy9pd7PZr6MUv6CgFQVvyyadtJEkG3c3hf57U1qdy1ye52XmReiakimlhM3eNrvwDtv5NOPTNNMnaEyJ0kmmydcpGhPORZIqys7RRQjfZBjGxAiNtBZScjpGy2Vv29g3uHDeQxEr1wYcHY4bwJ2L0MbK1hha8OsdLp3HtfVrwLbp6ir2Kxi8ut57W8CN2-uX6Ky0dYCr456gz8eHj_lzsnh9epnfL5KCpTQmDBiXQqY655aClVmuViupUyZVaTNKhudKEMqyMtdAOVMAWuYlzwVIlqclm6DbQ64LsTKhqCIUm8K17XCN4ZSITIkBujtAnXc_PYRomioUUNe2BdcHQxXXqeIsowM6O6CFdyF4KE3nq8b6naHE7Ls2f12bjJuh68G4OYb3eQOrf_5YLvsFzXt8fg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859285341</pqid></control><display><type>article</type><title>Quantum corrections to the potential energy for large amplitude collective motion</title><source>American Physical Society Journals</source><creator>Walet, NR ; Klein, A ; Do Dang G</creator><creatorcontrib>Walet, NR ; Klein, A ; Do Dang G</creatorcontrib><description>We discuss the problem of inclusion of quantum corrections in the semiclassical theory of adiabatic large amplitude collective motion for many-fermion systems. We concentrate on deriving a formula for the leading quantum correction to the classical collective potential energy function in this theory. This is an extension of the usual calculation of the quantum corrections to the static Hartree-Fock energy using the random phase approximation. The answer can be expressed in terms of those solutions of a local random phase approximation that describe oscillations orthogonal to the collective surface. Because of the strict enforcement of the Pauli principle, however, the answer differs from the usual quasiboson approximation, yielding the correct ground-state corrrelation energy for a static solution to the Hartree-Fock equations. The result is applied, approximately, to help improve a previous treatment of the low energy spectrum of {sup 28}Si.</description><identifier>ISSN: 0556-2813</identifier><identifier>EISSN: 1089-490X</identifier><identifier>DOI: 10.1103/PhysRevC.45.249</identifier><identifier>PMID: 9967751</identifier><language>eng</language><publisher>United States</publisher><subject>COLLECTIVE EXCITATIONS ; CORRECTIONS ; ENERGY ; ENERGY LEVELS ; ENERGY-LEVEL TRANSITIONS ; EXCITATION ; EXCITED STATES ; FERMI GAS MODEL ; MANY-BODY PROBLEM ; MATHEMATICAL MODELS ; MECHANICS ; NUCLEAR MODELS 663120 -- Nuclear Structure Models &amp; Methods-- (1992-) ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; NUCLEAR STRUCTURE ; POTENTIAL ENERGY ; QUANTUM MECHANICS ; SEMICLASSICAL APPROXIMATION ; SERIES EXPANSION</subject><ispartof>Physical review. C, Nuclear physics, 1992-01, Vol.45 (1), p.249-260</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-3e3576729b5a1ea74b8dd792378fa410103fe68a3fb9e1538ee97bf5b6e73b2f3</citedby><cites>FETCH-LOGICAL-c321t-3e3576729b5a1ea74b8dd792378fa410103fe68a3fb9e1538ee97bf5b6e73b2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9967751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5106486$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Walet, NR</creatorcontrib><creatorcontrib>Klein, A</creatorcontrib><creatorcontrib>Do Dang G</creatorcontrib><title>Quantum corrections to the potential energy for large amplitude collective motion</title><title>Physical review. C, Nuclear physics</title><addtitle>Phys Rev C Nucl Phys</addtitle><description>We discuss the problem of inclusion of quantum corrections in the semiclassical theory of adiabatic large amplitude collective motion for many-fermion systems. We concentrate on deriving a formula for the leading quantum correction to the classical collective potential energy function in this theory. This is an extension of the usual calculation of the quantum corrections to the static Hartree-Fock energy using the random phase approximation. The answer can be expressed in terms of those solutions of a local random phase approximation that describe oscillations orthogonal to the collective surface. Because of the strict enforcement of the Pauli principle, however, the answer differs from the usual quasiboson approximation, yielding the correct ground-state corrrelation energy for a static solution to the Hartree-Fock equations. The result is applied, approximately, to help improve a previous treatment of the low energy spectrum of {sup 28}Si.</description><subject>COLLECTIVE EXCITATIONS</subject><subject>CORRECTIONS</subject><subject>ENERGY</subject><subject>ENERGY LEVELS</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>EXCITATION</subject><subject>EXCITED STATES</subject><subject>FERMI GAS MODEL</subject><subject>MANY-BODY PROBLEM</subject><subject>MATHEMATICAL MODELS</subject><subject>MECHANICS</subject><subject>NUCLEAR MODELS 663120 -- Nuclear Structure Models &amp; Methods-- (1992-)</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>NUCLEAR STRUCTURE</subject><subject>POTENTIAL ENERGY</subject><subject>QUANTUM MECHANICS</subject><subject>SEMICLASSICAL APPROXIMATION</subject><subject>SERIES EXPANSION</subject><issn>0556-2813</issn><issn>1089-490X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRaq2ePQmLJy9pd7PZr6MUv6CgFQVvyyadtJEkG3c3hf57U1qdy1ye52XmReiakimlhM3eNrvwDtv5NOPTNNMnaEyJ0kmmydcpGhPORZIqys7RRQjfZBjGxAiNtBZScjpGy2Vv29g3uHDeQxEr1wYcHY4bwJ2L0MbK1hha8OsdLp3HtfVrwLbp6ir2Kxi8ut57W8CN2-uX6Ky0dYCr456gz8eHj_lzsnh9epnfL5KCpTQmDBiXQqY655aClVmuViupUyZVaTNKhudKEMqyMtdAOVMAWuYlzwVIlqclm6DbQ64LsTKhqCIUm8K17XCN4ZSITIkBujtAnXc_PYRomioUUNe2BdcHQxXXqeIsowM6O6CFdyF4KE3nq8b6naHE7Ls2f12bjJuh68G4OYb3eQOrf_5YLvsFzXt8fg</recordid><startdate>199201</startdate><enddate>199201</enddate><creator>Walet, NR</creator><creator>Klein, A</creator><creator>Do Dang G</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>199201</creationdate><title>Quantum corrections to the potential energy for large amplitude collective motion</title><author>Walet, NR ; Klein, A ; Do Dang G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-3e3576729b5a1ea74b8dd792378fa410103fe68a3fb9e1538ee97bf5b6e73b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>COLLECTIVE EXCITATIONS</topic><topic>CORRECTIONS</topic><topic>ENERGY</topic><topic>ENERGY LEVELS</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>EXCITATION</topic><topic>EXCITED STATES</topic><topic>FERMI GAS MODEL</topic><topic>MANY-BODY PROBLEM</topic><topic>MATHEMATICAL MODELS</topic><topic>MECHANICS</topic><topic>NUCLEAR MODELS 663120 -- Nuclear Structure Models &amp; Methods-- (1992-)</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>NUCLEAR STRUCTURE</topic><topic>POTENTIAL ENERGY</topic><topic>QUANTUM MECHANICS</topic><topic>SEMICLASSICAL APPROXIMATION</topic><topic>SERIES EXPANSION</topic><toplevel>online_resources</toplevel><creatorcontrib>Walet, NR</creatorcontrib><creatorcontrib>Klein, A</creatorcontrib><creatorcontrib>Do Dang G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C, Nuclear physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walet, NR</au><au>Klein, A</au><au>Do Dang G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum corrections to the potential energy for large amplitude collective motion</atitle><jtitle>Physical review. C, Nuclear physics</jtitle><addtitle>Phys Rev C Nucl Phys</addtitle><date>1992-01</date><risdate>1992</risdate><volume>45</volume><issue>1</issue><spage>249</spage><epage>260</epage><pages>249-260</pages><issn>0556-2813</issn><eissn>1089-490X</eissn><abstract>We discuss the problem of inclusion of quantum corrections in the semiclassical theory of adiabatic large amplitude collective motion for many-fermion systems. We concentrate on deriving a formula for the leading quantum correction to the classical collective potential energy function in this theory. This is an extension of the usual calculation of the quantum corrections to the static Hartree-Fock energy using the random phase approximation. The answer can be expressed in terms of those solutions of a local random phase approximation that describe oscillations orthogonal to the collective surface. Because of the strict enforcement of the Pauli principle, however, the answer differs from the usual quasiboson approximation, yielding the correct ground-state corrrelation energy for a static solution to the Hartree-Fock equations. The result is applied, approximately, to help improve a previous treatment of the low energy spectrum of {sup 28}Si.</abstract><cop>United States</cop><pmid>9967751</pmid><doi>10.1103/PhysRevC.45.249</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0556-2813
ispartof Physical review. C, Nuclear physics, 1992-01, Vol.45 (1), p.249-260
issn 0556-2813
1089-490X
language eng
recordid cdi_osti_scitechconnect_5106486
source American Physical Society Journals
subjects COLLECTIVE EXCITATIONS
CORRECTIONS
ENERGY
ENERGY LEVELS
ENERGY-LEVEL TRANSITIONS
EXCITATION
EXCITED STATES
FERMI GAS MODEL
MANY-BODY PROBLEM
MATHEMATICAL MODELS
MECHANICS
NUCLEAR MODELS 663120 -- Nuclear Structure Models & Methods-- (1992-)
NUCLEAR PHYSICS AND RADIATION PHYSICS
NUCLEAR STRUCTURE
POTENTIAL ENERGY
QUANTUM MECHANICS
SEMICLASSICAL APPROXIMATION
SERIES EXPANSION
title Quantum corrections to the potential energy for large amplitude collective motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20corrections%20to%20the%20potential%20energy%20for%20large%20amplitude%20collective%20motion&rft.jtitle=Physical%20review.%20C,%20Nuclear%20physics&rft.au=Walet,%20NR&rft.date=1992-01&rft.volume=45&rft.issue=1&rft.spage=249&rft.epage=260&rft.pages=249-260&rft.issn=0556-2813&rft.eissn=1089-490X&rft_id=info:doi/10.1103/PhysRevC.45.249&rft_dat=%3Cproquest_osti_%3E1859285341%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859285341&rft_id=info:pmid/9967751&rfr_iscdi=true