Quantum corrections to the potential energy for large amplitude collective motion
We discuss the problem of inclusion of quantum corrections in the semiclassical theory of adiabatic large amplitude collective motion for many-fermion systems. We concentrate on deriving a formula for the leading quantum correction to the classical collective potential energy function in this theory...
Gespeichert in:
Veröffentlicht in: | Physical review. C, Nuclear physics Nuclear physics, 1992-01, Vol.45 (1), p.249-260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 1 |
container_start_page | 249 |
container_title | Physical review. C, Nuclear physics |
container_volume | 45 |
creator | Walet, NR Klein, A Do Dang G |
description | We discuss the problem of inclusion of quantum corrections in the semiclassical theory of adiabatic large amplitude collective motion for many-fermion systems. We concentrate on deriving a formula for the leading quantum correction to the classical collective potential energy function in this theory. This is an extension of the usual calculation of the quantum corrections to the static Hartree-Fock energy using the random phase approximation. The answer can be expressed in terms of those solutions of a local random phase approximation that describe oscillations orthogonal to the collective surface. Because of the strict enforcement of the Pauli principle, however, the answer differs from the usual quasiboson approximation, yielding the correct ground-state corrrelation energy for a static solution to the Hartree-Fock equations. The result is applied, approximately, to help improve a previous treatment of the low energy spectrum of {sup 28}Si. |
doi_str_mv | 10.1103/PhysRevC.45.249 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_5106486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859285341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-3e3576729b5a1ea74b8dd792378fa410103fe68a3fb9e1538ee97bf5b6e73b2f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRaq2ePQmLJy9pd7PZr6MUv6CgFQVvyyadtJEkG3c3hf57U1qdy1ye52XmReiakimlhM3eNrvwDtv5NOPTNNMnaEyJ0kmmydcpGhPORZIqys7RRQjfZBjGxAiNtBZScjpGy2Vv29g3uHDeQxEr1wYcHY4bwJ2L0MbK1hha8OsdLp3HtfVrwLbp6ir2Kxi8ut57W8CN2-uX6Ky0dYCr456gz8eHj_lzsnh9epnfL5KCpTQmDBiXQqY655aClVmuViupUyZVaTNKhudKEMqyMtdAOVMAWuYlzwVIlqclm6DbQ64LsTKhqCIUm8K17XCN4ZSITIkBujtAnXc_PYRomioUUNe2BdcHQxXXqeIsowM6O6CFdyF4KE3nq8b6naHE7Ls2f12bjJuh68G4OYb3eQOrf_5YLvsFzXt8fg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859285341</pqid></control><display><type>article</type><title>Quantum corrections to the potential energy for large amplitude collective motion</title><source>American Physical Society Journals</source><creator>Walet, NR ; Klein, A ; Do Dang G</creator><creatorcontrib>Walet, NR ; Klein, A ; Do Dang G</creatorcontrib><description>We discuss the problem of inclusion of quantum corrections in the semiclassical theory of adiabatic large amplitude collective motion for many-fermion systems. We concentrate on deriving a formula for the leading quantum correction to the classical collective potential energy function in this theory. This is an extension of the usual calculation of the quantum corrections to the static Hartree-Fock energy using the random phase approximation. The answer can be expressed in terms of those solutions of a local random phase approximation that describe oscillations orthogonal to the collective surface. Because of the strict enforcement of the Pauli principle, however, the answer differs from the usual quasiboson approximation, yielding the correct ground-state corrrelation energy for a static solution to the Hartree-Fock equations. The result is applied, approximately, to help improve a previous treatment of the low energy spectrum of {sup 28}Si.</description><identifier>ISSN: 0556-2813</identifier><identifier>EISSN: 1089-490X</identifier><identifier>DOI: 10.1103/PhysRevC.45.249</identifier><identifier>PMID: 9967751</identifier><language>eng</language><publisher>United States</publisher><subject>COLLECTIVE EXCITATIONS ; CORRECTIONS ; ENERGY ; ENERGY LEVELS ; ENERGY-LEVEL TRANSITIONS ; EXCITATION ; EXCITED STATES ; FERMI GAS MODEL ; MANY-BODY PROBLEM ; MATHEMATICAL MODELS ; MECHANICS ; NUCLEAR MODELS 663120 -- Nuclear Structure Models & Methods-- (1992-) ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; NUCLEAR STRUCTURE ; POTENTIAL ENERGY ; QUANTUM MECHANICS ; SEMICLASSICAL APPROXIMATION ; SERIES EXPANSION</subject><ispartof>Physical review. C, Nuclear physics, 1992-01, Vol.45 (1), p.249-260</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-3e3576729b5a1ea74b8dd792378fa410103fe68a3fb9e1538ee97bf5b6e73b2f3</citedby><cites>FETCH-LOGICAL-c321t-3e3576729b5a1ea74b8dd792378fa410103fe68a3fb9e1538ee97bf5b6e73b2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9967751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5106486$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Walet, NR</creatorcontrib><creatorcontrib>Klein, A</creatorcontrib><creatorcontrib>Do Dang G</creatorcontrib><title>Quantum corrections to the potential energy for large amplitude collective motion</title><title>Physical review. C, Nuclear physics</title><addtitle>Phys Rev C Nucl Phys</addtitle><description>We discuss the problem of inclusion of quantum corrections in the semiclassical theory of adiabatic large amplitude collective motion for many-fermion systems. We concentrate on deriving a formula for the leading quantum correction to the classical collective potential energy function in this theory. This is an extension of the usual calculation of the quantum corrections to the static Hartree-Fock energy using the random phase approximation. The answer can be expressed in terms of those solutions of a local random phase approximation that describe oscillations orthogonal to the collective surface. Because of the strict enforcement of the Pauli principle, however, the answer differs from the usual quasiboson approximation, yielding the correct ground-state corrrelation energy for a static solution to the Hartree-Fock equations. The result is applied, approximately, to help improve a previous treatment of the low energy spectrum of {sup 28}Si.</description><subject>COLLECTIVE EXCITATIONS</subject><subject>CORRECTIONS</subject><subject>ENERGY</subject><subject>ENERGY LEVELS</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>EXCITATION</subject><subject>EXCITED STATES</subject><subject>FERMI GAS MODEL</subject><subject>MANY-BODY PROBLEM</subject><subject>MATHEMATICAL MODELS</subject><subject>MECHANICS</subject><subject>NUCLEAR MODELS 663120 -- Nuclear Structure Models & Methods-- (1992-)</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>NUCLEAR STRUCTURE</subject><subject>POTENTIAL ENERGY</subject><subject>QUANTUM MECHANICS</subject><subject>SEMICLASSICAL APPROXIMATION</subject><subject>SERIES EXPANSION</subject><issn>0556-2813</issn><issn>1089-490X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRaq2ePQmLJy9pd7PZr6MUv6CgFQVvyyadtJEkG3c3hf57U1qdy1ye52XmReiakimlhM3eNrvwDtv5NOPTNNMnaEyJ0kmmydcpGhPORZIqys7RRQjfZBjGxAiNtBZScjpGy2Vv29g3uHDeQxEr1wYcHY4bwJ2L0MbK1hha8OsdLp3HtfVrwLbp6ir2Kxi8ut57W8CN2-uX6Ky0dYCr456gz8eHj_lzsnh9epnfL5KCpTQmDBiXQqY655aClVmuViupUyZVaTNKhudKEMqyMtdAOVMAWuYlzwVIlqclm6DbQ64LsTKhqCIUm8K17XCN4ZSITIkBujtAnXc_PYRomioUUNe2BdcHQxXXqeIsowM6O6CFdyF4KE3nq8b6naHE7Ls2f12bjJuh68G4OYb3eQOrf_5YLvsFzXt8fg</recordid><startdate>199201</startdate><enddate>199201</enddate><creator>Walet, NR</creator><creator>Klein, A</creator><creator>Do Dang G</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>199201</creationdate><title>Quantum corrections to the potential energy for large amplitude collective motion</title><author>Walet, NR ; Klein, A ; Do Dang G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-3e3576729b5a1ea74b8dd792378fa410103fe68a3fb9e1538ee97bf5b6e73b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>COLLECTIVE EXCITATIONS</topic><topic>CORRECTIONS</topic><topic>ENERGY</topic><topic>ENERGY LEVELS</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>EXCITATION</topic><topic>EXCITED STATES</topic><topic>FERMI GAS MODEL</topic><topic>MANY-BODY PROBLEM</topic><topic>MATHEMATICAL MODELS</topic><topic>MECHANICS</topic><topic>NUCLEAR MODELS 663120 -- Nuclear Structure Models & Methods-- (1992-)</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>NUCLEAR STRUCTURE</topic><topic>POTENTIAL ENERGY</topic><topic>QUANTUM MECHANICS</topic><topic>SEMICLASSICAL APPROXIMATION</topic><topic>SERIES EXPANSION</topic><toplevel>online_resources</toplevel><creatorcontrib>Walet, NR</creatorcontrib><creatorcontrib>Klein, A</creatorcontrib><creatorcontrib>Do Dang G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C, Nuclear physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walet, NR</au><au>Klein, A</au><au>Do Dang G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum corrections to the potential energy for large amplitude collective motion</atitle><jtitle>Physical review. C, Nuclear physics</jtitle><addtitle>Phys Rev C Nucl Phys</addtitle><date>1992-01</date><risdate>1992</risdate><volume>45</volume><issue>1</issue><spage>249</spage><epage>260</epage><pages>249-260</pages><issn>0556-2813</issn><eissn>1089-490X</eissn><abstract>We discuss the problem of inclusion of quantum corrections in the semiclassical theory of adiabatic large amplitude collective motion for many-fermion systems. We concentrate on deriving a formula for the leading quantum correction to the classical collective potential energy function in this theory. This is an extension of the usual calculation of the quantum corrections to the static Hartree-Fock energy using the random phase approximation. The answer can be expressed in terms of those solutions of a local random phase approximation that describe oscillations orthogonal to the collective surface. Because of the strict enforcement of the Pauli principle, however, the answer differs from the usual quasiboson approximation, yielding the correct ground-state corrrelation energy for a static solution to the Hartree-Fock equations. The result is applied, approximately, to help improve a previous treatment of the low energy spectrum of {sup 28}Si.</abstract><cop>United States</cop><pmid>9967751</pmid><doi>10.1103/PhysRevC.45.249</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0556-2813 |
ispartof | Physical review. C, Nuclear physics, 1992-01, Vol.45 (1), p.249-260 |
issn | 0556-2813 1089-490X |
language | eng |
recordid | cdi_osti_scitechconnect_5106486 |
source | American Physical Society Journals |
subjects | COLLECTIVE EXCITATIONS CORRECTIONS ENERGY ENERGY LEVELS ENERGY-LEVEL TRANSITIONS EXCITATION EXCITED STATES FERMI GAS MODEL MANY-BODY PROBLEM MATHEMATICAL MODELS MECHANICS NUCLEAR MODELS 663120 -- Nuclear Structure Models & Methods-- (1992-) NUCLEAR PHYSICS AND RADIATION PHYSICS NUCLEAR STRUCTURE POTENTIAL ENERGY QUANTUM MECHANICS SEMICLASSICAL APPROXIMATION SERIES EXPANSION |
title | Quantum corrections to the potential energy for large amplitude collective motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20corrections%20to%20the%20potential%20energy%20for%20large%20amplitude%20collective%20motion&rft.jtitle=Physical%20review.%20C,%20Nuclear%20physics&rft.au=Walet,%20NR&rft.date=1992-01&rft.volume=45&rft.issue=1&rft.spage=249&rft.epage=260&rft.pages=249-260&rft.issn=0556-2813&rft.eissn=1089-490X&rft_id=info:doi/10.1103/PhysRevC.45.249&rft_dat=%3Cproquest_osti_%3E1859285341%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859285341&rft_id=info:pmid/9967751&rfr_iscdi=true |