The Thermoluminescence of Irradiated Polyethylene and Other Polymers

The thermoluminescence glow curves of various polymers have been observed in the temperature range 77 °K to ice point after 60Co γ-irradiation, and a number of them are reproduced. A detailed study of polyethylene thermoluminescence was made. The glow curve of this material in the absence of oxygen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Mathematical and physical sciences, 1963-01, Vol.271 (1345), p.170-187
Hauptverfasser: Charlesby, A., Partridge, R. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187
container_issue 1345
container_start_page 170
container_title Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences
container_volume 271
creator Charlesby, A.
Partridge, R. H.
description The thermoluminescence glow curves of various polymers have been observed in the temperature range 77 °K to ice point after 60Co γ-irradiation, and a number of them are reproduced. A detailed study of polyethylene thermoluminescence was made. The glow curve of this material in the absence of oxygen comprises three glow peaks, the α, β, γ peaks, whose luminescence intensities are proportional to irradiation dose for doses below 50 krads. The α, β, γ peaks all decay exponentially at constant temperature, and a study of the kinetics involved shows that all these peaks have the same activation energy at the lowest temperatures. At higher temperatures the β and γ peaks each show two different transition points, one in the visible region and one in the ultra-violet, which appear to be related to two of the known structural transitions of polyethylene. The glow curves of a variety of different polyethylenes were recorded. By comparison of these it was found that the relative heights of the α, β, γ peaks are dependent on the degree of crystallinity of the materials but that the normal chemical impurities present in commercial polyethylenes have no effect on their glow curves.
doi_str_mv 10.1098/rspa.1963.0012
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_4757477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2414570</jstor_id><sourcerecordid>2414570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-459b03efbb21624a1e78b65e80dcc840735e7aa1ccb55e5c1055892507caa4b93</originalsourceid><addsrcrecordid>eNp9UcFu1DAQjRBIlMKVE4eIexZPbMfJCZVCodJKrWCB48hxJqyXbLKyvUD4epwEVVoherDs8bw37_k5SZ4DWwGrylfOH_QKqoKvGIP8QXIGQkGWV6J4GM-8EJlkOTxOnni_Y4xVslRnydvNltK43H7ojnvbkzfUG0qHNr12TjdWB2rS26EbKWzHjnpKdd-kNyFS5us9Of80edTqztOzv_t58vnq3ebyQ7a-eX99ebHOjFQQMiGrmnFq6zqHIhcaSJV1IalkjTGlYIpLUlqDMbWUJA0wKcsql0wZrUVd8fPk5TJ38MGiNzaQ2Zqh78kEFEoqoVQErRaQcYP3jlo8OLvXbkRgOAWFU1A4BYVTUJHAF4Ibxuh-MJbCiLvh6PpY_p_l72N9_HR7ARUvf-QKLHAhkZUcWAEVFPjbHuZxEwAjAK33R8IZdirzr-qLRXXnw-DuXpYLEFKx2M6WtvWBft21tfuOheJK4pdSYHmVA3-z-YrriIcFv7Xftj-tIzx5TSwOzuvZ4mwOZo3X93Imw_FPAvXhhIjtsevw0LT8Dzms0sk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Thermoluminescence of Irradiated Polyethylene and Other Polymers</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Charlesby, A. ; Partridge, R. H.</creator><creatorcontrib>Charlesby, A. ; Partridge, R. H. ; Royal Military Coll. of Science, Shrivenham, Wiltshire, Eng</creatorcontrib><description>The thermoluminescence glow curves of various polymers have been observed in the temperature range 77 °K to ice point after 60Co γ-irradiation, and a number of them are reproduced. A detailed study of polyethylene thermoluminescence was made. The glow curve of this material in the absence of oxygen comprises three glow peaks, the α, β, γ peaks, whose luminescence intensities are proportional to irradiation dose for doses below 50 krads. The α, β, γ peaks all decay exponentially at constant temperature, and a study of the kinetics involved shows that all these peaks have the same activation energy at the lowest temperatures. At higher temperatures the β and γ peaks each show two different transition points, one in the visible region and one in the ultra-violet, which appear to be related to two of the known structural transitions of polyethylene. The glow curves of a variety of different polyethylenes were recorded. By comparison of these it was found that the relative heights of the α, β, γ peaks are dependent on the degree of crystallinity of the materials but that the normal chemical impurities present in commercial polyethylenes have no effect on their glow curves.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0080-4630</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9169</identifier><identifier>DOI: 10.1098/rspa.1963.0012</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Activation energy ; COBALT 60 ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTALS ; DECAY ; DIAGRAMS ; EXCITATION ; GAMMA RADIATION ; IMPURITIES ; IRRADIATION ; LATTICES ; Light ; LOW TEMPERATURE ; LUMINESCENCE ; Materials ; MATERIALS SCIENCE ; OXYGEN ; POLYETHYLENES ; POLYMERS ; Radiation dosage ; RADIATION DOSES ; RADIATION EFFECTS ; RADIATIONS ; THERMODYNAMICS ; Thermoluminescence ; Transition temperature ; ULTRAVIOLET RADIATION</subject><ispartof>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1963-01, Vol.271 (1345), p.170-187</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-459b03efbb21624a1e78b65e80dcc840735e7aa1ccb55e5c1055892507caa4b93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2414570$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2414570$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4757477$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Charlesby, A.</creatorcontrib><creatorcontrib>Partridge, R. H.</creatorcontrib><creatorcontrib>Royal Military Coll. of Science, Shrivenham, Wiltshire, Eng</creatorcontrib><title>The Thermoluminescence of Irradiated Polyethylene and Other Polymers</title><title>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>The thermoluminescence glow curves of various polymers have been observed in the temperature range 77 °K to ice point after 60Co γ-irradiation, and a number of them are reproduced. A detailed study of polyethylene thermoluminescence was made. The glow curve of this material in the absence of oxygen comprises three glow peaks, the α, β, γ peaks, whose luminescence intensities are proportional to irradiation dose for doses below 50 krads. The α, β, γ peaks all decay exponentially at constant temperature, and a study of the kinetics involved shows that all these peaks have the same activation energy at the lowest temperatures. At higher temperatures the β and γ peaks each show two different transition points, one in the visible region and one in the ultra-violet, which appear to be related to two of the known structural transitions of polyethylene. The glow curves of a variety of different polyethylenes were recorded. By comparison of these it was found that the relative heights of the α, β, γ peaks are dependent on the degree of crystallinity of the materials but that the normal chemical impurities present in commercial polyethylenes have no effect on their glow curves.</description><subject>Activation energy</subject><subject>COBALT 60</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTALS</subject><subject>DECAY</subject><subject>DIAGRAMS</subject><subject>EXCITATION</subject><subject>GAMMA RADIATION</subject><subject>IMPURITIES</subject><subject>IRRADIATION</subject><subject>LATTICES</subject><subject>Light</subject><subject>LOW TEMPERATURE</subject><subject>LUMINESCENCE</subject><subject>Materials</subject><subject>MATERIALS SCIENCE</subject><subject>OXYGEN</subject><subject>POLYETHYLENES</subject><subject>POLYMERS</subject><subject>Radiation dosage</subject><subject>RADIATION DOSES</subject><subject>RADIATION EFFECTS</subject><subject>RADIATIONS</subject><subject>THERMODYNAMICS</subject><subject>Thermoluminescence</subject><subject>Transition temperature</subject><subject>ULTRAVIOLET RADIATION</subject><issn>1364-5021</issn><issn>0080-4630</issn><issn>1471-2946</issn><issn>2053-9169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1963</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu1DAQjRBIlMKVE4eIexZPbMfJCZVCodJKrWCB48hxJqyXbLKyvUD4epwEVVoherDs8bw37_k5SZ4DWwGrylfOH_QKqoKvGIP8QXIGQkGWV6J4GM-8EJlkOTxOnni_Y4xVslRnydvNltK43H7ojnvbkzfUG0qHNr12TjdWB2rS26EbKWzHjnpKdd-kNyFS5us9Of80edTqztOzv_t58vnq3ebyQ7a-eX99ebHOjFQQMiGrmnFq6zqHIhcaSJV1IalkjTGlYIpLUlqDMbWUJA0wKcsql0wZrUVd8fPk5TJ38MGiNzaQ2Zqh78kEFEoqoVQErRaQcYP3jlo8OLvXbkRgOAWFU1A4BYVTUJHAF4Ibxuh-MJbCiLvh6PpY_p_l72N9_HR7ARUvf-QKLHAhkZUcWAEVFPjbHuZxEwAjAK33R8IZdirzr-qLRXXnw-DuXpYLEFKx2M6WtvWBft21tfuOheJK4pdSYHmVA3-z-YrriIcFv7Xftj-tIzx5TSwOzuvZ4mwOZo3X93Imw_FPAvXhhIjtsevw0LT8Dzms0sk</recordid><startdate>19630115</startdate><enddate>19630115</enddate><creator>Charlesby, A.</creator><creator>Partridge, R. H.</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19630115</creationdate><title>The Thermoluminescence of Irradiated Polyethylene and Other Polymers</title><author>Charlesby, A. ; Partridge, R. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-459b03efbb21624a1e78b65e80dcc840735e7aa1ccb55e5c1055892507caa4b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1963</creationdate><topic>Activation energy</topic><topic>COBALT 60</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTALS</topic><topic>DECAY</topic><topic>DIAGRAMS</topic><topic>EXCITATION</topic><topic>GAMMA RADIATION</topic><topic>IMPURITIES</topic><topic>IRRADIATION</topic><topic>LATTICES</topic><topic>Light</topic><topic>LOW TEMPERATURE</topic><topic>LUMINESCENCE</topic><topic>Materials</topic><topic>MATERIALS SCIENCE</topic><topic>OXYGEN</topic><topic>POLYETHYLENES</topic><topic>POLYMERS</topic><topic>Radiation dosage</topic><topic>RADIATION DOSES</topic><topic>RADIATION EFFECTS</topic><topic>RADIATIONS</topic><topic>THERMODYNAMICS</topic><topic>Thermoluminescence</topic><topic>Transition temperature</topic><topic>ULTRAVIOLET RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charlesby, A.</creatorcontrib><creatorcontrib>Partridge, R. H.</creatorcontrib><creatorcontrib>Royal Military Coll. of Science, Shrivenham, Wiltshire, Eng</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charlesby, A.</au><au>Partridge, R. H.</au><aucorp>Royal Military Coll. of Science, Shrivenham, Wiltshire, Eng</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Thermoluminescence of Irradiated Polyethylene and Other Polymers</atitle><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1963-01-15</date><risdate>1963</risdate><volume>271</volume><issue>1345</issue><spage>170</spage><epage>187</epage><pages>170-187</pages><issn>1364-5021</issn><issn>0080-4630</issn><eissn>1471-2946</eissn><eissn>2053-9169</eissn><abstract>The thermoluminescence glow curves of various polymers have been observed in the temperature range 77 °K to ice point after 60Co γ-irradiation, and a number of them are reproduced. A detailed study of polyethylene thermoluminescence was made. The glow curve of this material in the absence of oxygen comprises three glow peaks, the α, β, γ peaks, whose luminescence intensities are proportional to irradiation dose for doses below 50 krads. The α, β, γ peaks all decay exponentially at constant temperature, and a study of the kinetics involved shows that all these peaks have the same activation energy at the lowest temperatures. At higher temperatures the β and γ peaks each show two different transition points, one in the visible region and one in the ultra-violet, which appear to be related to two of the known structural transitions of polyethylene. The glow curves of a variety of different polyethylenes were recorded. By comparison of these it was found that the relative heights of the α, β, γ peaks are dependent on the degree of crystallinity of the materials but that the normal chemical impurities present in commercial polyethylenes have no effect on their glow curves.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1963.0012</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1963-01, Vol.271 (1345), p.170-187
issn 1364-5021
0080-4630
1471-2946
2053-9169
language eng
recordid cdi_osti_scitechconnect_4757477
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Activation energy
COBALT 60
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CRYSTALS
DECAY
DIAGRAMS
EXCITATION
GAMMA RADIATION
IMPURITIES
IRRADIATION
LATTICES
Light
LOW TEMPERATURE
LUMINESCENCE
Materials
MATERIALS SCIENCE
OXYGEN
POLYETHYLENES
POLYMERS
Radiation dosage
RADIATION DOSES
RADIATION EFFECTS
RADIATIONS
THERMODYNAMICS
Thermoluminescence
Transition temperature
ULTRAVIOLET RADIATION
title The Thermoluminescence of Irradiated Polyethylene and Other Polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Thermoluminescence%20of%20Irradiated%20Polyethylene%20and%20Other%20Polymers&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20London.%20Series%20A,%20Mathematical%20and%20physical%20sciences&rft.au=Charlesby,%20A.&rft.aucorp=Royal%20Military%20Coll.%20of%20Science,%20Shrivenham,%20Wiltshire,%20Eng&rft.date=1963-01-15&rft.volume=271&rft.issue=1345&rft.spage=170&rft.epage=187&rft.pages=170-187&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1963.0012&rft_dat=%3Cjstor_osti_%3E2414570%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2414570&rfr_iscdi=true