The Thermoluminescence of Irradiated Polyethylene and Other Polymers
The thermoluminescence glow curves of various polymers have been observed in the temperature range 77 °K to ice point after 60Co γ-irradiation, and a number of them are reproduced. A detailed study of polyethylene thermoluminescence was made. The glow curve of this material in the absence of oxygen...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Mathematical and physical sciences, 1963-01, Vol.271 (1345), p.170-187 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 187 |
---|---|
container_issue | 1345 |
container_start_page | 170 |
container_title | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences |
container_volume | 271 |
creator | Charlesby, A. Partridge, R. H. |
description | The thermoluminescence glow curves of various polymers have been observed in the temperature range 77 °K to ice point after 60Co γ-irradiation, and a number of them are reproduced. A detailed study of polyethylene thermoluminescence was made. The glow curve of this material in the absence of oxygen comprises three glow peaks, the α, β, γ peaks, whose luminescence intensities are proportional to irradiation dose for doses below 50 krads. The α, β, γ peaks all decay exponentially at constant temperature, and a study of the kinetics involved shows that all these peaks have the same activation energy at the lowest temperatures. At higher temperatures the β and γ peaks each show two different transition points, one in the visible region and one in the ultra-violet, which appear to be related to two of the known structural transitions of polyethylene. The glow curves of a variety of different polyethylenes were recorded. By comparison of these it was found that the relative heights of the α, β, γ peaks are dependent on the degree of crystallinity of the materials but that the normal chemical impurities present in commercial polyethylenes have no effect on their glow curves. |
doi_str_mv | 10.1098/rspa.1963.0012 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_4757477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2414570</jstor_id><sourcerecordid>2414570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-459b03efbb21624a1e78b65e80dcc840735e7aa1ccb55e5c1055892507caa4b93</originalsourceid><addsrcrecordid>eNp9UcFu1DAQjRBIlMKVE4eIexZPbMfJCZVCodJKrWCB48hxJqyXbLKyvUD4epwEVVoherDs8bw37_k5SZ4DWwGrylfOH_QKqoKvGIP8QXIGQkGWV6J4GM-8EJlkOTxOnni_Y4xVslRnydvNltK43H7ojnvbkzfUG0qHNr12TjdWB2rS26EbKWzHjnpKdd-kNyFS5us9Of80edTqztOzv_t58vnq3ebyQ7a-eX99ebHOjFQQMiGrmnFq6zqHIhcaSJV1IalkjTGlYIpLUlqDMbWUJA0wKcsql0wZrUVd8fPk5TJ38MGiNzaQ2Zqh78kEFEoqoVQErRaQcYP3jlo8OLvXbkRgOAWFU1A4BYVTUJHAF4Ibxuh-MJbCiLvh6PpY_p_l72N9_HR7ARUvf-QKLHAhkZUcWAEVFPjbHuZxEwAjAK33R8IZdirzr-qLRXXnw-DuXpYLEFKx2M6WtvWBft21tfuOheJK4pdSYHmVA3-z-YrriIcFv7Xftj-tIzx5TSwOzuvZ4mwOZo3X93Imw_FPAvXhhIjtsevw0LT8Dzms0sk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Thermoluminescence of Irradiated Polyethylene and Other Polymers</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Charlesby, A. ; Partridge, R. H.</creator><creatorcontrib>Charlesby, A. ; Partridge, R. H. ; Royal Military Coll. of Science, Shrivenham, Wiltshire, Eng</creatorcontrib><description>The thermoluminescence glow curves of various polymers have been observed in the temperature range 77 °K to ice point after 60Co γ-irradiation, and a number of them are reproduced. A detailed study of polyethylene thermoluminescence was made. The glow curve of this material in the absence of oxygen comprises three glow peaks, the α, β, γ peaks, whose luminescence intensities are proportional to irradiation dose for doses below 50 krads. The α, β, γ peaks all decay exponentially at constant temperature, and a study of the kinetics involved shows that all these peaks have the same activation energy at the lowest temperatures. At higher temperatures the β and γ peaks each show two different transition points, one in the visible region and one in the ultra-violet, which appear to be related to two of the known structural transitions of polyethylene. The glow curves of a variety of different polyethylenes were recorded. By comparison of these it was found that the relative heights of the α, β, γ peaks are dependent on the degree of crystallinity of the materials but that the normal chemical impurities present in commercial polyethylenes have no effect on their glow curves.</description><identifier>ISSN: 1364-5021</identifier><identifier>ISSN: 0080-4630</identifier><identifier>EISSN: 1471-2946</identifier><identifier>EISSN: 2053-9169</identifier><identifier>DOI: 10.1098/rspa.1963.0012</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Activation energy ; COBALT 60 ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTALS ; DECAY ; DIAGRAMS ; EXCITATION ; GAMMA RADIATION ; IMPURITIES ; IRRADIATION ; LATTICES ; Light ; LOW TEMPERATURE ; LUMINESCENCE ; Materials ; MATERIALS SCIENCE ; OXYGEN ; POLYETHYLENES ; POLYMERS ; Radiation dosage ; RADIATION DOSES ; RADIATION EFFECTS ; RADIATIONS ; THERMODYNAMICS ; Thermoluminescence ; Transition temperature ; ULTRAVIOLET RADIATION</subject><ispartof>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1963-01, Vol.271 (1345), p.170-187</ispartof><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-459b03efbb21624a1e78b65e80dcc840735e7aa1ccb55e5c1055892507caa4b93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2414570$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2414570$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4757477$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Charlesby, A.</creatorcontrib><creatorcontrib>Partridge, R. H.</creatorcontrib><creatorcontrib>Royal Military Coll. of Science, Shrivenham, Wiltshire, Eng</creatorcontrib><title>The Thermoluminescence of Irradiated Polyethylene and Other Polymers</title><title>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</title><addtitle>Proc. R. Soc. Lond. A</addtitle><addtitle>Proc. R. Soc. Lond. A</addtitle><description>The thermoluminescence glow curves of various polymers have been observed in the temperature range 77 °K to ice point after 60Co γ-irradiation, and a number of them are reproduced. A detailed study of polyethylene thermoluminescence was made. The glow curve of this material in the absence of oxygen comprises three glow peaks, the α, β, γ peaks, whose luminescence intensities are proportional to irradiation dose for doses below 50 krads. The α, β, γ peaks all decay exponentially at constant temperature, and a study of the kinetics involved shows that all these peaks have the same activation energy at the lowest temperatures. At higher temperatures the β and γ peaks each show two different transition points, one in the visible region and one in the ultra-violet, which appear to be related to two of the known structural transitions of polyethylene. The glow curves of a variety of different polyethylenes were recorded. By comparison of these it was found that the relative heights of the α, β, γ peaks are dependent on the degree of crystallinity of the materials but that the normal chemical impurities present in commercial polyethylenes have no effect on their glow curves.</description><subject>Activation energy</subject><subject>COBALT 60</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTALS</subject><subject>DECAY</subject><subject>DIAGRAMS</subject><subject>EXCITATION</subject><subject>GAMMA RADIATION</subject><subject>IMPURITIES</subject><subject>IRRADIATION</subject><subject>LATTICES</subject><subject>Light</subject><subject>LOW TEMPERATURE</subject><subject>LUMINESCENCE</subject><subject>Materials</subject><subject>MATERIALS SCIENCE</subject><subject>OXYGEN</subject><subject>POLYETHYLENES</subject><subject>POLYMERS</subject><subject>Radiation dosage</subject><subject>RADIATION DOSES</subject><subject>RADIATION EFFECTS</subject><subject>RADIATIONS</subject><subject>THERMODYNAMICS</subject><subject>Thermoluminescence</subject><subject>Transition temperature</subject><subject>ULTRAVIOLET RADIATION</subject><issn>1364-5021</issn><issn>0080-4630</issn><issn>1471-2946</issn><issn>2053-9169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1963</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu1DAQjRBIlMKVE4eIexZPbMfJCZVCodJKrWCB48hxJqyXbLKyvUD4epwEVVoherDs8bw37_k5SZ4DWwGrylfOH_QKqoKvGIP8QXIGQkGWV6J4GM-8EJlkOTxOnni_Y4xVslRnydvNltK43H7ojnvbkzfUG0qHNr12TjdWB2rS26EbKWzHjnpKdd-kNyFS5us9Of80edTqztOzv_t58vnq3ebyQ7a-eX99ebHOjFQQMiGrmnFq6zqHIhcaSJV1IalkjTGlYIpLUlqDMbWUJA0wKcsql0wZrUVd8fPk5TJ38MGiNzaQ2Zqh78kEFEoqoVQErRaQcYP3jlo8OLvXbkRgOAWFU1A4BYVTUJHAF4Ibxuh-MJbCiLvh6PpY_p_l72N9_HR7ARUvf-QKLHAhkZUcWAEVFPjbHuZxEwAjAK33R8IZdirzr-qLRXXnw-DuXpYLEFKx2M6WtvWBft21tfuOheJK4pdSYHmVA3-z-YrriIcFv7Xftj-tIzx5TSwOzuvZ4mwOZo3X93Imw_FPAvXhhIjtsevw0LT8Dzms0sk</recordid><startdate>19630115</startdate><enddate>19630115</enddate><creator>Charlesby, A.</creator><creator>Partridge, R. H.</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19630115</creationdate><title>The Thermoluminescence of Irradiated Polyethylene and Other Polymers</title><author>Charlesby, A. ; Partridge, R. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-459b03efbb21624a1e78b65e80dcc840735e7aa1ccb55e5c1055892507caa4b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1963</creationdate><topic>Activation energy</topic><topic>COBALT 60</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTALS</topic><topic>DECAY</topic><topic>DIAGRAMS</topic><topic>EXCITATION</topic><topic>GAMMA RADIATION</topic><topic>IMPURITIES</topic><topic>IRRADIATION</topic><topic>LATTICES</topic><topic>Light</topic><topic>LOW TEMPERATURE</topic><topic>LUMINESCENCE</topic><topic>Materials</topic><topic>MATERIALS SCIENCE</topic><topic>OXYGEN</topic><topic>POLYETHYLENES</topic><topic>POLYMERS</topic><topic>Radiation dosage</topic><topic>RADIATION DOSES</topic><topic>RADIATION EFFECTS</topic><topic>RADIATIONS</topic><topic>THERMODYNAMICS</topic><topic>Thermoluminescence</topic><topic>Transition temperature</topic><topic>ULTRAVIOLET RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charlesby, A.</creatorcontrib><creatorcontrib>Partridge, R. H.</creatorcontrib><creatorcontrib>Royal Military Coll. of Science, Shrivenham, Wiltshire, Eng</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charlesby, A.</au><au>Partridge, R. H.</au><aucorp>Royal Military Coll. of Science, Shrivenham, Wiltshire, Eng</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Thermoluminescence of Irradiated Polyethylene and Other Polymers</atitle><jtitle>Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences</jtitle><stitle>Proc. R. Soc. Lond. A</stitle><addtitle>Proc. R. Soc. Lond. A</addtitle><date>1963-01-15</date><risdate>1963</risdate><volume>271</volume><issue>1345</issue><spage>170</spage><epage>187</epage><pages>170-187</pages><issn>1364-5021</issn><issn>0080-4630</issn><eissn>1471-2946</eissn><eissn>2053-9169</eissn><abstract>The thermoluminescence glow curves of various polymers have been observed in the temperature range 77 °K to ice point after 60Co γ-irradiation, and a number of them are reproduced. A detailed study of polyethylene thermoluminescence was made. The glow curve of this material in the absence of oxygen comprises three glow peaks, the α, β, γ peaks, whose luminescence intensities are proportional to irradiation dose for doses below 50 krads. The α, β, γ peaks all decay exponentially at constant temperature, and a study of the kinetics involved shows that all these peaks have the same activation energy at the lowest temperatures. At higher temperatures the β and γ peaks each show two different transition points, one in the visible region and one in the ultra-violet, which appear to be related to two of the known structural transitions of polyethylene. The glow curves of a variety of different polyethylenes were recorded. By comparison of these it was found that the relative heights of the α, β, γ peaks are dependent on the degree of crystallinity of the materials but that the normal chemical impurities present in commercial polyethylenes have no effect on their glow curves.</abstract><cop>London</cop><pub>The Royal Society</pub><doi>10.1098/rspa.1963.0012</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 1963-01, Vol.271 (1345), p.170-187 |
issn | 1364-5021 0080-4630 1471-2946 2053-9169 |
language | eng |
recordid | cdi_osti_scitechconnect_4757477 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Activation energy COBALT 60 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY CRYSTALS DECAY DIAGRAMS EXCITATION GAMMA RADIATION IMPURITIES IRRADIATION LATTICES Light LOW TEMPERATURE LUMINESCENCE Materials MATERIALS SCIENCE OXYGEN POLYETHYLENES POLYMERS Radiation dosage RADIATION DOSES RADIATION EFFECTS RADIATIONS THERMODYNAMICS Thermoluminescence Transition temperature ULTRAVIOLET RADIATION |
title | The Thermoluminescence of Irradiated Polyethylene and Other Polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Thermoluminescence%20of%20Irradiated%20Polyethylene%20and%20Other%20Polymers&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20London.%20Series%20A,%20Mathematical%20and%20physical%20sciences&rft.au=Charlesby,%20A.&rft.aucorp=Royal%20Military%20Coll.%20of%20Science,%20Shrivenham,%20Wiltshire,%20Eng&rft.date=1963-01-15&rft.volume=271&rft.issue=1345&rft.spage=170&rft.epage=187&rft.pages=170-187&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.1963.0012&rft_dat=%3Cjstor_osti_%3E2414570%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2414570&rfr_iscdi=true |