Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal

A key to the utilization of nitride-arsenides for long wavelength optoelectronic devices is obtaining low defect materials with long nonradiative lifetimes. Currently, these materials must be annealed to obtain device quality material. The likely defect responsible for the low luminescence efficienc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2001-04, Vol.89 (8), p.4401-4406
Hauptverfasser: Spruytte, Sylvia G., Coldren, Christopher W., Harris, James S., Wampler, William, Krispin, Peter, Ploog, Klaus, Larson, Michael C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4406
container_issue 8
container_start_page 4401
container_title Journal of applied physics
container_volume 89
creator Spruytte, Sylvia G.
Coldren, Christopher W.
Harris, James S.
Wampler, William
Krispin, Peter
Ploog, Klaus
Larson, Michael C.
description A key to the utilization of nitride-arsenides for long wavelength optoelectronic devices is obtaining low defect materials with long nonradiative lifetimes. Currently, these materials must be annealed to obtain device quality material. The likely defect responsible for the low luminescence efficiency is associated with excess nitrogen. Photoluminescence and capacitance–voltage measurements indicate the presence of a trap associated with excess nitrogen which decreases in concentration upon anneal. Our films are grown by elemental source molecular beam epitaxy and the background impurity concentration is low, thus we have investigated the role of crystalline defects. High resolution x-ray diffraction showed improved crystal quality after anneal. We observed that the lattice parameter does not decrease linearly with nitrogen concentration for levels of nitrogen above 2.9 mol % GaN. The fact that Vegard’s law is not observed, despite theoretical calculations that it should, indicates that nitrogen incorporates in locations other than the group V lattice sites. X-ray photoelectron spectroscopy revealed that nitrogen exists in two bonding configurations in not-annealed material: a Ga–N bond and another nitrogen complex in which N is less strongly bonded to gallium atoms. Annealing removes this second nitrogen complex. A combined nuclear reaction analysis and channeling technique showed that not annealed GaNAs contains a significant concentration of interstitial nitrogen that disappears upon anneal. We believe that this interstitial nitrogen is responsible for the deviation from Vegard’s law and the low luminescence efficiency of not annealed GaNAs and GaInNAs quantum wells.
doi_str_mv 10.1063/1.1352675
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_40204942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1352675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-ce9c8d99e64f51fa282833a2be311c3ae6957df4540140d6475a2dcf6ce2bd733</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_0HAlYupuXnMTNxJ8VEodKPrIb1zUyNtUpJR6L93bF2db_FxOBzGbkHMQNTqAWagjKwbc8YmIFpbNcaIczYRQkLV2sZesqtSvoQAaJWdsM0iYsr7lN0QUuTJ8xiGnDYUeYhHDj1VLheKI5RHvsphE45i2O1z-qGeb793IVJBikicvA8YRjxw5wfK3MVIbnvNLrzbFrr5zyn7eHl-n79Vy9XrYv60rFBJGCoki21vLdXaG_BOtrJVysk1KQBUjmprmt5rowVo0de6MU726Gskue4bpabs7tSbyhC6gmEg_MQ0bsCh00IKbbUcrfuThTmVksl3-xx2Lh86EN3fjx10_z-qX-NOZj8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Spruytte, Sylvia G. ; Coldren, Christopher W. ; Harris, James S. ; Wampler, William ; Krispin, Peter ; Ploog, Klaus ; Larson, Michael C.</creator><creatorcontrib>Spruytte, Sylvia G. ; Coldren, Christopher W. ; Harris, James S. ; Wampler, William ; Krispin, Peter ; Ploog, Klaus ; Larson, Michael C.</creatorcontrib><description>A key to the utilization of nitride-arsenides for long wavelength optoelectronic devices is obtaining low defect materials with long nonradiative lifetimes. Currently, these materials must be annealed to obtain device quality material. The likely defect responsible for the low luminescence efficiency is associated with excess nitrogen. Photoluminescence and capacitance–voltage measurements indicate the presence of a trap associated with excess nitrogen which decreases in concentration upon anneal. Our films are grown by elemental source molecular beam epitaxy and the background impurity concentration is low, thus we have investigated the role of crystalline defects. High resolution x-ray diffraction showed improved crystal quality after anneal. We observed that the lattice parameter does not decrease linearly with nitrogen concentration for levels of nitrogen above 2.9 mol % GaN. The fact that Vegard’s law is not observed, despite theoretical calculations that it should, indicates that nitrogen incorporates in locations other than the group V lattice sites. X-ray photoelectron spectroscopy revealed that nitrogen exists in two bonding configurations in not-annealed material: a Ga–N bond and another nitrogen complex in which N is less strongly bonded to gallium atoms. Annealing removes this second nitrogen complex. A combined nuclear reaction analysis and channeling technique showed that not annealed GaNAs contains a significant concentration of interstitial nitrogen that disappears upon anneal. We believe that this interstitial nitrogen is responsible for the deviation from Vegard’s law and the low luminescence efficiency of not annealed GaNAs and GaInNAs quantum wells.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1352675</identifier><language>eng</language><publisher>United States: The American Physical Society</publisher><subject>EFFICIENCY ; LATTICE PARAMETERS ; LUMINESCENCE ; MATERIALS SCIENCE ; MOLECULAR BEAM EPITAXY ; NITROGEN ; NUCLEAR REACTION ANALYSIS ; ORIGIN ; PHOTOELECTRON SPECTROSCOPY ; X-RAY DIFFRACTION</subject><ispartof>Journal of applied physics, 2001-04, Vol.89 (8), p.4401-4406</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-ce9c8d99e64f51fa282833a2be311c3ae6957df4540140d6475a2dcf6ce2bd733</citedby><cites>FETCH-LOGICAL-c321t-ce9c8d99e64f51fa282833a2be311c3ae6957df4540140d6475a2dcf6ce2bd733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/40204942$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Spruytte, Sylvia G.</creatorcontrib><creatorcontrib>Coldren, Christopher W.</creatorcontrib><creatorcontrib>Harris, James S.</creatorcontrib><creatorcontrib>Wampler, William</creatorcontrib><creatorcontrib>Krispin, Peter</creatorcontrib><creatorcontrib>Ploog, Klaus</creatorcontrib><creatorcontrib>Larson, Michael C.</creatorcontrib><title>Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal</title><title>Journal of applied physics</title><description>A key to the utilization of nitride-arsenides for long wavelength optoelectronic devices is obtaining low defect materials with long nonradiative lifetimes. Currently, these materials must be annealed to obtain device quality material. The likely defect responsible for the low luminescence efficiency is associated with excess nitrogen. Photoluminescence and capacitance–voltage measurements indicate the presence of a trap associated with excess nitrogen which decreases in concentration upon anneal. Our films are grown by elemental source molecular beam epitaxy and the background impurity concentration is low, thus we have investigated the role of crystalline defects. High resolution x-ray diffraction showed improved crystal quality after anneal. We observed that the lattice parameter does not decrease linearly with nitrogen concentration for levels of nitrogen above 2.9 mol % GaN. The fact that Vegard’s law is not observed, despite theoretical calculations that it should, indicates that nitrogen incorporates in locations other than the group V lattice sites. X-ray photoelectron spectroscopy revealed that nitrogen exists in two bonding configurations in not-annealed material: a Ga–N bond and another nitrogen complex in which N is less strongly bonded to gallium atoms. Annealing removes this second nitrogen complex. A combined nuclear reaction analysis and channeling technique showed that not annealed GaNAs contains a significant concentration of interstitial nitrogen that disappears upon anneal. We believe that this interstitial nitrogen is responsible for the deviation from Vegard’s law and the low luminescence efficiency of not annealed GaNAs and GaInNAs quantum wells.</description><subject>EFFICIENCY</subject><subject>LATTICE PARAMETERS</subject><subject>LUMINESCENCE</subject><subject>MATERIALS SCIENCE</subject><subject>MOLECULAR BEAM EPITAXY</subject><subject>NITROGEN</subject><subject>NUCLEAR REACTION ANALYSIS</subject><subject>ORIGIN</subject><subject>PHOTOELECTRON SPECTROSCOPY</subject><subject>X-RAY DIFFRACTION</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_0HAlYupuXnMTNxJ8VEodKPrIb1zUyNtUpJR6L93bF2db_FxOBzGbkHMQNTqAWagjKwbc8YmIFpbNcaIczYRQkLV2sZesqtSvoQAaJWdsM0iYsr7lN0QUuTJ8xiGnDYUeYhHDj1VLheKI5RHvsphE45i2O1z-qGeb793IVJBikicvA8YRjxw5wfK3MVIbnvNLrzbFrr5zyn7eHl-n79Vy9XrYv60rFBJGCoki21vLdXaG_BOtrJVysk1KQBUjmprmt5rowVo0de6MU726Gskue4bpabs7tSbyhC6gmEg_MQ0bsCh00IKbbUcrfuThTmVksl3-xx2Lh86EN3fjx10_z-qX-NOZj8</recordid><startdate>20010415</startdate><enddate>20010415</enddate><creator>Spruytte, Sylvia G.</creator><creator>Coldren, Christopher W.</creator><creator>Harris, James S.</creator><creator>Wampler, William</creator><creator>Krispin, Peter</creator><creator>Ploog, Klaus</creator><creator>Larson, Michael C.</creator><general>The American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20010415</creationdate><title>Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal</title><author>Spruytte, Sylvia G. ; Coldren, Christopher W. ; Harris, James S. ; Wampler, William ; Krispin, Peter ; Ploog, Klaus ; Larson, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-ce9c8d99e64f51fa282833a2be311c3ae6957df4540140d6475a2dcf6ce2bd733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>EFFICIENCY</topic><topic>LATTICE PARAMETERS</topic><topic>LUMINESCENCE</topic><topic>MATERIALS SCIENCE</topic><topic>MOLECULAR BEAM EPITAXY</topic><topic>NITROGEN</topic><topic>NUCLEAR REACTION ANALYSIS</topic><topic>ORIGIN</topic><topic>PHOTOELECTRON SPECTROSCOPY</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spruytte, Sylvia G.</creatorcontrib><creatorcontrib>Coldren, Christopher W.</creatorcontrib><creatorcontrib>Harris, James S.</creatorcontrib><creatorcontrib>Wampler, William</creatorcontrib><creatorcontrib>Krispin, Peter</creatorcontrib><creatorcontrib>Ploog, Klaus</creatorcontrib><creatorcontrib>Larson, Michael C.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spruytte, Sylvia G.</au><au>Coldren, Christopher W.</au><au>Harris, James S.</au><au>Wampler, William</au><au>Krispin, Peter</au><au>Ploog, Klaus</au><au>Larson, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal</atitle><jtitle>Journal of applied physics</jtitle><date>2001-04-15</date><risdate>2001</risdate><volume>89</volume><issue>8</issue><spage>4401</spage><epage>4406</epage><pages>4401-4406</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>A key to the utilization of nitride-arsenides for long wavelength optoelectronic devices is obtaining low defect materials with long nonradiative lifetimes. Currently, these materials must be annealed to obtain device quality material. The likely defect responsible for the low luminescence efficiency is associated with excess nitrogen. Photoluminescence and capacitance–voltage measurements indicate the presence of a trap associated with excess nitrogen which decreases in concentration upon anneal. Our films are grown by elemental source molecular beam epitaxy and the background impurity concentration is low, thus we have investigated the role of crystalline defects. High resolution x-ray diffraction showed improved crystal quality after anneal. We observed that the lattice parameter does not decrease linearly with nitrogen concentration for levels of nitrogen above 2.9 mol % GaN. The fact that Vegard’s law is not observed, despite theoretical calculations that it should, indicates that nitrogen incorporates in locations other than the group V lattice sites. X-ray photoelectron spectroscopy revealed that nitrogen exists in two bonding configurations in not-annealed material: a Ga–N bond and another nitrogen complex in which N is less strongly bonded to gallium atoms. Annealing removes this second nitrogen complex. A combined nuclear reaction analysis and channeling technique showed that not annealed GaNAs contains a significant concentration of interstitial nitrogen that disappears upon anneal. We believe that this interstitial nitrogen is responsible for the deviation from Vegard’s law and the low luminescence efficiency of not annealed GaNAs and GaInNAs quantum wells.</abstract><cop>United States</cop><pub>The American Physical Society</pub><doi>10.1063/1.1352675</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2001-04, Vol.89 (8), p.4401-4406
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_40204942
source AIP Journals Complete; AIP Digital Archive
subjects EFFICIENCY
LATTICE PARAMETERS
LUMINESCENCE
MATERIALS SCIENCE
MOLECULAR BEAM EPITAXY
NITROGEN
NUCLEAR REACTION ANALYSIS
ORIGIN
PHOTOELECTRON SPECTROSCOPY
X-RAY DIFFRACTION
title Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20nitrogen%20in%20nitride-arsenides:%20Origin%20of%20improved%20luminescence%20efficiency%20after%20anneal&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Spruytte,%20Sylvia%20G.&rft.date=2001-04-15&rft.volume=89&rft.issue=8&rft.spage=4401&rft.epage=4406&rft.pages=4401-4406&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1352675&rft_dat=%3Ccrossref_osti_%3E10_1063_1_1352675%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true