Temporal correlations and neural spike train entropy

Sampling considerations limit the experimental conditions under which information theoretic analyses of neurophysiological data yield reliable results. We develop a procedure for computing the full temporal entropy and information of ensembles of neural spike trains, which performs reliably for limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2001-06, Vol.86 (25), p.5823-5826
Hauptverfasser: Schultz, S R, Panzeri, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5826
container_issue 25
container_start_page 5823
container_title Physical review letters
container_volume 86
creator Schultz, S R
Panzeri, S
description Sampling considerations limit the experimental conditions under which information theoretic analyses of neurophysiological data yield reliable results. We develop a procedure for computing the full temporal entropy and information of ensembles of neural spike trains, which performs reliably for limited samples of data. This approach also yields insight to the role of correlations between spikes in temporal coding mechanisms. The method, when applied to recordings from complex cells of the monkey primary visual cortex, results in lower rms error information estimates in comparison to a "brute force" approach.
doi_str_mv 10.1103/PhysRevLett.86.5823
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_40204699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>578356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-bec50e19cba257a34b9c9151de42a14335368604ee32ec76250af80e63018d883</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK3-AkECgrfU2Y9sNkcpfkFBkXpeNpspjSbZuLsR-u9NaUFvngZmnvdleAi5pDCnFPjt62Yb3vB7iTHOlZxnivEjMqWQF2lOqTgmUwBO0wIgn5CzED4AgDKpTslkPNOMy3xKxArb3nnTJNZ5j42JtetCYroq6XDY7UNff2ISvam7BLvoXb89Jydr0wS8OMwZeX-4Xy2e0uXL4_PibplaLiGmJdoMkBa2NCzLDRdlYQua0QoFM1RwPr6gJAhEztDmkmVg1gpQcqCqUorPyPW-14VY62DriHZjXdehjVoAAyGLYqRu9lTv3deAIeq2DhabxnTohqBzKASAgn9BRoVgSmQjyPeg9S4Ej2vd-7o1fqsp6J17_ce9VlLv3I-pq0P9ULZY_WYOsvkPOgSA6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21442845</pqid></control><display><type>article</type><title>Temporal correlations and neural spike train entropy</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Schultz, S R ; Panzeri, S</creator><creatorcontrib>Schultz, S R ; Panzeri, S</creatorcontrib><description>Sampling considerations limit the experimental conditions under which information theoretic analyses of neurophysiological data yield reliable results. We develop a procedure for computing the full temporal entropy and information of ensembles of neural spike trains, which performs reliably for limited samples of data. This approach also yields insight to the role of correlations between spikes in temporal coding mechanisms. The method, when applied to recordings from complex cells of the monkey primary visual cortex, results in lower rms error information estimates in comparison to a "brute force" approach.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.86.5823</identifier><identifier>PMID: 11415367</identifier><language>eng</language><publisher>United States: The American Physical Society</publisher><subject>Action Potentials ; Animals ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer simulation ; Correlation methods ; ENTROPY ; Haplorhini ; Mathematical models ; Models, Neurological ; MONKEYS ; Neurons - physiology ; Probability ; SAMPLING ; Visual Cortex - cytology ; Visual Cortex - physiology</subject><ispartof>Physical review letters, 2001-06, Vol.86 (25), p.5823-5826</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-bec50e19cba257a34b9c9151de42a14335368604ee32ec76250af80e63018d883</citedby><cites>FETCH-LOGICAL-c360t-bec50e19cba257a34b9c9151de42a14335368604ee32ec76250af80e63018d883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11415367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/40204699$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schultz, S R</creatorcontrib><creatorcontrib>Panzeri, S</creatorcontrib><title>Temporal correlations and neural spike train entropy</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Sampling considerations limit the experimental conditions under which information theoretic analyses of neurophysiological data yield reliable results. We develop a procedure for computing the full temporal entropy and information of ensembles of neural spike trains, which performs reliably for limited samples of data. This approach also yields insight to the role of correlations between spikes in temporal coding mechanisms. The method, when applied to recordings from complex cells of the monkey primary visual cortex, results in lower rms error information estimates in comparison to a "brute force" approach.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer simulation</subject><subject>Correlation methods</subject><subject>ENTROPY</subject><subject>Haplorhini</subject><subject>Mathematical models</subject><subject>Models, Neurological</subject><subject>MONKEYS</subject><subject>Neurons - physiology</subject><subject>Probability</subject><subject>SAMPLING</subject><subject>Visual Cortex - cytology</subject><subject>Visual Cortex - physiology</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQhhdRbK3-AkECgrfU2Y9sNkcpfkFBkXpeNpspjSbZuLsR-u9NaUFvngZmnvdleAi5pDCnFPjt62Yb3vB7iTHOlZxnivEjMqWQF2lOqTgmUwBO0wIgn5CzED4AgDKpTslkPNOMy3xKxArb3nnTJNZ5j42JtetCYroq6XDY7UNff2ISvam7BLvoXb89Jydr0wS8OMwZeX-4Xy2e0uXL4_PibplaLiGmJdoMkBa2NCzLDRdlYQua0QoFM1RwPr6gJAhEztDmkmVg1gpQcqCqUorPyPW-14VY62DriHZjXdehjVoAAyGLYqRu9lTv3deAIeq2DhabxnTohqBzKASAgn9BRoVgSmQjyPeg9S4Ej2vd-7o1fqsp6J17_ce9VlLv3I-pq0P9ULZY_WYOsvkPOgSA6w</recordid><startdate>20010618</startdate><enddate>20010618</enddate><creator>Schultz, S R</creator><creator>Panzeri, S</creator><general>The American Physical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20010618</creationdate><title>Temporal correlations and neural spike train entropy</title><author>Schultz, S R ; Panzeri, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-bec50e19cba257a34b9c9151de42a14335368604ee32ec76250af80e63018d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer simulation</topic><topic>Correlation methods</topic><topic>ENTROPY</topic><topic>Haplorhini</topic><topic>Mathematical models</topic><topic>Models, Neurological</topic><topic>MONKEYS</topic><topic>Neurons - physiology</topic><topic>Probability</topic><topic>SAMPLING</topic><topic>Visual Cortex - cytology</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schultz, S R</creatorcontrib><creatorcontrib>Panzeri, S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schultz, S R</au><au>Panzeri, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal correlations and neural spike train entropy</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2001-06-18</date><risdate>2001</risdate><volume>86</volume><issue>25</issue><spage>5823</spage><epage>5826</epage><pages>5823-5826</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Sampling considerations limit the experimental conditions under which information theoretic analyses of neurophysiological data yield reliable results. We develop a procedure for computing the full temporal entropy and information of ensembles of neural spike trains, which performs reliably for limited samples of data. This approach also yields insight to the role of correlations between spikes in temporal coding mechanisms. The method, when applied to recordings from complex cells of the monkey primary visual cortex, results in lower rms error information estimates in comparison to a "brute force" approach.</abstract><cop>United States</cop><pub>The American Physical Society</pub><pmid>11415367</pmid><doi>10.1103/PhysRevLett.86.5823</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2001-06, Vol.86 (25), p.5823-5826
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_40204699
source MEDLINE; American Physical Society Journals
subjects Action Potentials
Animals
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computer simulation
Correlation methods
ENTROPY
Haplorhini
Mathematical models
Models, Neurological
MONKEYS
Neurons - physiology
Probability
SAMPLING
Visual Cortex - cytology
Visual Cortex - physiology
title Temporal correlations and neural spike train entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20correlations%20and%20neural%20spike%20train%20entropy&rft.jtitle=Physical%20review%20letters&rft.au=Schultz,%20S%20R&rft.date=2001-06-18&rft.volume=86&rft.issue=25&rft.spage=5823&rft.epage=5826&rft.pages=5823-5826&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.86.5823&rft_dat=%3Cproquest_osti_%3E578356%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21442845&rft_id=info:pmid/11415367&rfr_iscdi=true