Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation

A theoretical simulation has been performed to elucidate the emergence of nematic domains during pattern photopolymerization-induced phase separation in holographic polymer-dispersed liquid crystals. We consider a reference system consisting of a single-component nematic, namely, 4-n-heptyl-4('...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-06, Vol.63 (6 Pt 1), p.061802-061802, Article 061802
Hauptverfasser: Kyu, T, Nwabunma, D, Chiu, H W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 061802
container_issue 6 Pt 1
container_start_page 061802
container_title Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
container_volume 63
creator Kyu, T
Nwabunma, D
Chiu, H W
description A theoretical simulation has been performed to elucidate the emergence of nematic domains during pattern photopolymerization-induced phase separation in holographic polymer-dispersed liquid crystals. We consider a reference system consisting of a single-component nematic, namely, 4-n-heptyl-4(')-cyanobiphenyl (T(NI)=42 degrees C), and a polymer network made from multifunctional monomers. To mimic pattern photopolymerization, the reaction rate was varied periodically in space through wave mixing. In the theoretical development, the photopolymerization kinetics was coupled with the time-dependent Ginzburg-Landau model C equations by incorporating the local free energy densities pertaining to isotropic liquid-liquid mixing, nematic ordering, and network elasticity. The simulated morphological patterns in the concentration and orientation order parameter fields show discrete layers of liquid-crystal droplets alternating periodically with polymer-network-rich layers. The Fourier transforms of these patterns show sharp diffraction spots arising from the periodic layers. As the layer thickness is reduced, the liquid-crystal molecules are confined in the narrow stripes. The liquid-crystal domains appear uniform along the stripes, which in turn gives rise to sharper diffraction spots in Fourier space. Of particular interest is that our simulated stratified patterns are in qualitative agreement with reported experimental observations.
doi_str_mv 10.1103/physreve.63.061802
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_40203258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70932148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-346077f65f79a7463acf525e07b84b9f4464e37415dad7ba2e0d2bb9c9e4e43c3</originalsourceid><addsrcrecordid>eNpFkcFKHTEUhkOxqFVfoAsJCN3NNZkkk5mliLYFoUV0HTKZM52UzCQmmQvXfd_b6L3QVQ7k_34450PoKyUbSgm7DtMuRdjCpmEb0tCW1J_QKSWdqJhs5VGZBevKLMQJ-pLSX0JYzVp-jE4o5VRQRk_Rv6cJfIRsjXY42Xl1Olu_YD_iyTv_J-owWYODd7sZYjXYFCAmGLCzL6sdKhN3KRd0tG5OeGs1DjpniAsOk8_-wNnXj9bKLsNqChwmnQAnCDp-fJyjz6N2CS4O7xl6vr97uv1RPfz6_vP25qEyrGO5YrwhUo6NGGWnJW-YNqOoBRDZt7zvRs4bDkyW3QY9yF7XQIa67zvTAQfODDtDV_ten7JVydgMZjJ-WcBkxUldDiTakvq2T4XoX1ZIWc02GXBOL-DXpCTpWE35e7DeB030qagYVYh21nGnKFHvitTvougRtneqYWqvqECXh_a1n2H4jxycsDfep5L3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70932148</pqid></control><display><type>article</type><title>Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation</title><source>American Physical Society Journals</source><creator>Kyu, T ; Nwabunma, D ; Chiu, H W</creator><creatorcontrib>Kyu, T ; Nwabunma, D ; Chiu, H W</creatorcontrib><description>A theoretical simulation has been performed to elucidate the emergence of nematic domains during pattern photopolymerization-induced phase separation in holographic polymer-dispersed liquid crystals. We consider a reference system consisting of a single-component nematic, namely, 4-n-heptyl-4(')-cyanobiphenyl (T(NI)=42 degrees C), and a polymer network made from multifunctional monomers. To mimic pattern photopolymerization, the reaction rate was varied periodically in space through wave mixing. In the theoretical development, the photopolymerization kinetics was coupled with the time-dependent Ginzburg-Landau model C equations by incorporating the local free energy densities pertaining to isotropic liquid-liquid mixing, nematic ordering, and network elasticity. The simulated morphological patterns in the concentration and orientation order parameter fields show discrete layers of liquid-crystal droplets alternating periodically with polymer-network-rich layers. The Fourier transforms of these patterns show sharp diffraction spots arising from the periodic layers. As the layer thickness is reduced, the liquid-crystal molecules are confined in the narrow stripes. The liquid-crystal domains appear uniform along the stripes, which in turn gives rise to sharper diffraction spots in Fourier space. Of particular interest is that our simulated stratified patterns are in qualitative agreement with reported experimental observations.</description><identifier>ISSN: 1539-3755</identifier><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/physreve.63.061802</identifier><identifier>PMID: 11415131</identifier><language>eng</language><publisher>United States: The American Physical Society</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DIFFRACTION ; ELASTICITY ; FREE ENERGY ; KINETICS ; LIQUID CRYSTALS ; MONOMERS ; ORDER PARAMETERS ; ORIENTATION ; POLYMERS ; REACTION KINETICS ; SIMULATION ; THICKNESS</subject><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-06, Vol.63 (6 Pt 1), p.061802-061802, Article 061802</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-346077f65f79a7463acf525e07b84b9f4464e37415dad7ba2e0d2bb9c9e4e43c3</citedby><cites>FETCH-LOGICAL-c393t-346077f65f79a7463acf525e07b84b9f4464e37415dad7ba2e0d2bb9c9e4e43c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11415131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/40203258$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyu, T</creatorcontrib><creatorcontrib>Nwabunma, D</creatorcontrib><creatorcontrib>Chiu, H W</creatorcontrib><title>Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>A theoretical simulation has been performed to elucidate the emergence of nematic domains during pattern photopolymerization-induced phase separation in holographic polymer-dispersed liquid crystals. We consider a reference system consisting of a single-component nematic, namely, 4-n-heptyl-4(')-cyanobiphenyl (T(NI)=42 degrees C), and a polymer network made from multifunctional monomers. To mimic pattern photopolymerization, the reaction rate was varied periodically in space through wave mixing. In the theoretical development, the photopolymerization kinetics was coupled with the time-dependent Ginzburg-Landau model C equations by incorporating the local free energy densities pertaining to isotropic liquid-liquid mixing, nematic ordering, and network elasticity. The simulated morphological patterns in the concentration and orientation order parameter fields show discrete layers of liquid-crystal droplets alternating periodically with polymer-network-rich layers. The Fourier transforms of these patterns show sharp diffraction spots arising from the periodic layers. As the layer thickness is reduced, the liquid-crystal molecules are confined in the narrow stripes. The liquid-crystal domains appear uniform along the stripes, which in turn gives rise to sharper diffraction spots in Fourier space. Of particular interest is that our simulated stratified patterns are in qualitative agreement with reported experimental observations.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DIFFRACTION</subject><subject>ELASTICITY</subject><subject>FREE ENERGY</subject><subject>KINETICS</subject><subject>LIQUID CRYSTALS</subject><subject>MONOMERS</subject><subject>ORDER PARAMETERS</subject><subject>ORIENTATION</subject><subject>POLYMERS</subject><subject>REACTION KINETICS</subject><subject>SIMULATION</subject><subject>THICKNESS</subject><issn>1539-3755</issn><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFkcFKHTEUhkOxqFVfoAsJCN3NNZkkk5mliLYFoUV0HTKZM52UzCQmmQvXfd_b6L3QVQ7k_34450PoKyUbSgm7DtMuRdjCpmEb0tCW1J_QKSWdqJhs5VGZBevKLMQJ-pLSX0JYzVp-jE4o5VRQRk_Rv6cJfIRsjXY42Xl1Olu_YD_iyTv_J-owWYODd7sZYjXYFCAmGLCzL6sdKhN3KRd0tG5OeGs1DjpniAsOk8_-wNnXj9bKLsNqChwmnQAnCDp-fJyjz6N2CS4O7xl6vr97uv1RPfz6_vP25qEyrGO5YrwhUo6NGGWnJW-YNqOoBRDZt7zvRs4bDkyW3QY9yF7XQIa67zvTAQfODDtDV_ten7JVydgMZjJ-WcBkxUldDiTakvq2T4XoX1ZIWc02GXBOL-DXpCTpWE35e7DeB030qagYVYh21nGnKFHvitTvougRtneqYWqvqECXh_a1n2H4jxycsDfep5L3</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Kyu, T</creator><creator>Nwabunma, D</creator><creator>Chiu, H W</creator><general>The American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20010601</creationdate><title>Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation</title><author>Kyu, T ; Nwabunma, D ; Chiu, H W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-346077f65f79a7463acf525e07b84b9f4464e37415dad7ba2e0d2bb9c9e4e43c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DIFFRACTION</topic><topic>ELASTICITY</topic><topic>FREE ENERGY</topic><topic>KINETICS</topic><topic>LIQUID CRYSTALS</topic><topic>MONOMERS</topic><topic>ORDER PARAMETERS</topic><topic>ORIENTATION</topic><topic>POLYMERS</topic><topic>REACTION KINETICS</topic><topic>SIMULATION</topic><topic>THICKNESS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kyu, T</creatorcontrib><creatorcontrib>Nwabunma, D</creatorcontrib><creatorcontrib>Chiu, H W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyu, T</au><au>Nwabunma, D</au><au>Chiu, H W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2001-06-01</date><risdate>2001</risdate><volume>63</volume><issue>6 Pt 1</issue><spage>061802</spage><epage>061802</epage><pages>061802-061802</pages><artnum>061802</artnum><issn>1539-3755</issn><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>A theoretical simulation has been performed to elucidate the emergence of nematic domains during pattern photopolymerization-induced phase separation in holographic polymer-dispersed liquid crystals. We consider a reference system consisting of a single-component nematic, namely, 4-n-heptyl-4(')-cyanobiphenyl (T(NI)=42 degrees C), and a polymer network made from multifunctional monomers. To mimic pattern photopolymerization, the reaction rate was varied periodically in space through wave mixing. In the theoretical development, the photopolymerization kinetics was coupled with the time-dependent Ginzburg-Landau model C equations by incorporating the local free energy densities pertaining to isotropic liquid-liquid mixing, nematic ordering, and network elasticity. The simulated morphological patterns in the concentration and orientation order parameter fields show discrete layers of liquid-crystal droplets alternating periodically with polymer-network-rich layers. The Fourier transforms of these patterns show sharp diffraction spots arising from the periodic layers. As the layer thickness is reduced, the liquid-crystal molecules are confined in the narrow stripes. The liquid-crystal domains appear uniform along the stripes, which in turn gives rise to sharper diffraction spots in Fourier space. Of particular interest is that our simulated stratified patterns are in qualitative agreement with reported experimental observations.</abstract><cop>United States</cop><pub>The American Physical Society</pub><pmid>11415131</pmid><doi>10.1103/physreve.63.061802</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-06, Vol.63 (6 Pt 1), p.061802-061802, Article 061802
issn 1539-3755
1063-651X
1095-3787
language eng
recordid cdi_osti_scitechconnect_40203258
source American Physical Society Journals
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DIFFRACTION
ELASTICITY
FREE ENERGY
KINETICS
LIQUID CRYSTALS
MONOMERS
ORDER PARAMETERS
ORIENTATION
POLYMERS
REACTION KINETICS
SIMULATION
THICKNESS
title Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20simulation%20of%20holographic%20polymer-dispersed%20liquid-crystal%20films%20via%20pattern%20photopolymerization-induced%20phase%20separation&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Kyu,%20T&rft.date=2001-06-01&rft.volume=63&rft.issue=6%20Pt%201&rft.spage=061802&rft.epage=061802&rft.pages=061802-061802&rft.artnum=061802&rft.issn=1539-3755&rft.eissn=1095-3787&rft_id=info:doi/10.1103/physreve.63.061802&rft_dat=%3Cproquest_osti_%3E70932148%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70932148&rft_id=info:pmid/11415131&rfr_iscdi=true