Pulse Electrodeposition for Carbonate-Rich Deposits from Seawater

Seawater electrodeposition is gaining renewed interest in the context of sustainable development, both to build climate-resilient coastal infrastructure and for ocean-based decarbonization applications. Most of the applications benefit from CaCO3-rich deposits, but constant-voltage electrodeposition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-12, Vol.16 (23), p.10776
Hauptverfasser: Robinson, Alexander J, Ryan, Elisabeth A, Wang, Qingpu, Greene, David, Subban, Chinmayee V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 10776
container_title Sustainability
container_volume 16
creator Robinson, Alexander J
Ryan, Elisabeth A
Wang, Qingpu
Greene, David
Subban, Chinmayee V
description Seawater electrodeposition is gaining renewed interest in the context of sustainable development, both to build climate-resilient coastal infrastructure and for ocean-based decarbonization applications. Most of the applications benefit from CaCO3-rich deposits, but constant-voltage electrodeposition results in a mixture of CaCO3 and Mg(OH)2, especially at higher voltages where precipitation rates are more desirable. The use of pulse voltages can help control interfacial pH that dictates the precipitation reactions. Here, we explore the use of pulse electrodeposition as a function of pulse frequency and duty cycle to control deposit composition. The most CaCO3-rich deposits were obtained under 10 Hz frequency and 10% duty cycle conditions for the voltage window investigated (−0.8 V to −1.2 V vs. SCE). While pulsing the voltage increases the amount of CaCO3 deposited, the energy required per gram of CaCO3 is significantly higher (14.5×) when compared to the base case of applying a constant voltage of −0.8 V vs. SCE. Further optimization of pulse conditions, electrode materials, and system configuration could lead to finding parameters that result in exclusively carbonate deposits without compromising precipitation rates, which may prove to be more useful for corrosion protection, coastal infrastructure, and other applications in sustainable development.
doi_str_mv 10.3390/su162310776
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2496252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A820019803</galeid><sourcerecordid>A820019803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-1372f1e95bdc12e9d168ba4fa4c0c81945a4fc8e3ecaada72640b6c6970efa603</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhhdRsNSe_AOLnkS25mM3uzmWWrVQUFo9h2x20qa0m5pkUf-9KevBzhzm65mXgUmSa4zGlHL04DvMCMWoLNlZMiCoxBlGBTr_l18mI--3KBqlmGM2SCZv3c5DOtuBCs42cLDeBGPbVFuXTqWrbSsDZEujNuljP_WpdnafrkB-xZG7Si60jBqjvzhMPp5m79OXbPH6PJ9OFpkiFQsZpiXRGHhRNwoT4A1mVS1zLXOFVIV5XsRCVUBBSdnIkrAc1UwxXiLQkiE6TG56XeuDEV6ZAGqjbNvGywXJOSMFidBtDx2c_ezAB7G1nWvjXYLiPMclLxiN1Lin1nIHwrTaBidV9Ab2JkqCNrE_qQhCmFfouHB3shCZAN9hLTvvxXy1PGXve1Y5670DLQ7O7KX7ERiJ46PEv0fRXzkjgz8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144179563</pqid></control><display><type>article</type><title>Pulse Electrodeposition for Carbonate-Rich Deposits from Seawater</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Robinson, Alexander J ; Ryan, Elisabeth A ; Wang, Qingpu ; Greene, David ; Subban, Chinmayee V</creator><creatorcontrib>Robinson, Alexander J ; Ryan, Elisabeth A ; Wang, Qingpu ; Greene, David ; Subban, Chinmayee V ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Seawater electrodeposition is gaining renewed interest in the context of sustainable development, both to build climate-resilient coastal infrastructure and for ocean-based decarbonization applications. Most of the applications benefit from CaCO3-rich deposits, but constant-voltage electrodeposition results in a mixture of CaCO3 and Mg(OH)2, especially at higher voltages where precipitation rates are more desirable. The use of pulse voltages can help control interfacial pH that dictates the precipitation reactions. Here, we explore the use of pulse electrodeposition as a function of pulse frequency and duty cycle to control deposit composition. The most CaCO3-rich deposits were obtained under 10 Hz frequency and 10% duty cycle conditions for the voltage window investigated (−0.8 V to −1.2 V vs. SCE). While pulsing the voltage increases the amount of CaCO3 deposited, the energy required per gram of CaCO3 is significantly higher (14.5×) when compared to the base case of applying a constant voltage of −0.8 V vs. SCE. Further optimization of pulse conditions, electrode materials, and system configuration could lead to finding parameters that result in exclusively carbonate deposits without compromising precipitation rates, which may prove to be more useful for corrosion protection, coastal infrastructure, and other applications in sustainable development.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su162310776</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>calcareous deposits ; carbon mineralization ; Carbonates ; Corrosion ; Corrosion and anti-corrosives ; Electrochemical reactions ; electrodeposition ; Electrodes ; ENVIRONMENTAL SCIENCES ; Experiments ; Infrastructure ; Low carbon steel ; Precipitation ; Sea-water ; Seawater ; voltage pulsing ; Waterfront development</subject><ispartof>Sustainability, 2024-12, Vol.16 (23), p.10776</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-1372f1e95bdc12e9d168ba4fa4c0c81945a4fc8e3ecaada72640b6c6970efa603</cites><orcidid>0000-0002-5470-8608 ; 0000000254708608 ; 0000000165732366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2496252$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Robinson, Alexander J</creatorcontrib><creatorcontrib>Ryan, Elisabeth A</creatorcontrib><creatorcontrib>Wang, Qingpu</creatorcontrib><creatorcontrib>Greene, David</creatorcontrib><creatorcontrib>Subban, Chinmayee V</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Pulse Electrodeposition for Carbonate-Rich Deposits from Seawater</title><title>Sustainability</title><description>Seawater electrodeposition is gaining renewed interest in the context of sustainable development, both to build climate-resilient coastal infrastructure and for ocean-based decarbonization applications. Most of the applications benefit from CaCO3-rich deposits, but constant-voltage electrodeposition results in a mixture of CaCO3 and Mg(OH)2, especially at higher voltages where precipitation rates are more desirable. The use of pulse voltages can help control interfacial pH that dictates the precipitation reactions. Here, we explore the use of pulse electrodeposition as a function of pulse frequency and duty cycle to control deposit composition. The most CaCO3-rich deposits were obtained under 10 Hz frequency and 10% duty cycle conditions for the voltage window investigated (−0.8 V to −1.2 V vs. SCE). While pulsing the voltage increases the amount of CaCO3 deposited, the energy required per gram of CaCO3 is significantly higher (14.5×) when compared to the base case of applying a constant voltage of −0.8 V vs. SCE. Further optimization of pulse conditions, electrode materials, and system configuration could lead to finding parameters that result in exclusively carbonate deposits without compromising precipitation rates, which may prove to be more useful for corrosion protection, coastal infrastructure, and other applications in sustainable development.</description><subject>calcareous deposits</subject><subject>carbon mineralization</subject><subject>Carbonates</subject><subject>Corrosion</subject><subject>Corrosion and anti-corrosives</subject><subject>Electrochemical reactions</subject><subject>electrodeposition</subject><subject>Electrodes</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Experiments</subject><subject>Infrastructure</subject><subject>Low carbon steel</subject><subject>Precipitation</subject><subject>Sea-water</subject><subject>Seawater</subject><subject>voltage pulsing</subject><subject>Waterfront development</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkU1LAzEQhhdRsNSe_AOLnkS25mM3uzmWWrVQUFo9h2x20qa0m5pkUf-9KevBzhzm65mXgUmSa4zGlHL04DvMCMWoLNlZMiCoxBlGBTr_l18mI--3KBqlmGM2SCZv3c5DOtuBCs42cLDeBGPbVFuXTqWrbSsDZEujNuljP_WpdnafrkB-xZG7Si60jBqjvzhMPp5m79OXbPH6PJ9OFpkiFQsZpiXRGHhRNwoT4A1mVS1zLXOFVIV5XsRCVUBBSdnIkrAc1UwxXiLQkiE6TG56XeuDEV6ZAGqjbNvGywXJOSMFidBtDx2c_ezAB7G1nWvjXYLiPMclLxiN1Lin1nIHwrTaBidV9Ab2JkqCNrE_qQhCmFfouHB3shCZAN9hLTvvxXy1PGXve1Y5670DLQ7O7KX7ERiJ46PEv0fRXzkjgz8</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Robinson, Alexander J</creator><creator>Ryan, Elisabeth A</creator><creator>Wang, Qingpu</creator><creator>Greene, David</creator><creator>Subban, Chinmayee V</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5470-8608</orcidid><orcidid>https://orcid.org/0000000254708608</orcidid><orcidid>https://orcid.org/0000000165732366</orcidid></search><sort><creationdate>20241201</creationdate><title>Pulse Electrodeposition for Carbonate-Rich Deposits from Seawater</title><author>Robinson, Alexander J ; Ryan, Elisabeth A ; Wang, Qingpu ; Greene, David ; Subban, Chinmayee V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-1372f1e95bdc12e9d168ba4fa4c0c81945a4fc8e3ecaada72640b6c6970efa603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>calcareous deposits</topic><topic>carbon mineralization</topic><topic>Carbonates</topic><topic>Corrosion</topic><topic>Corrosion and anti-corrosives</topic><topic>Electrochemical reactions</topic><topic>electrodeposition</topic><topic>Electrodes</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Experiments</topic><topic>Infrastructure</topic><topic>Low carbon steel</topic><topic>Precipitation</topic><topic>Sea-water</topic><topic>Seawater</topic><topic>voltage pulsing</topic><topic>Waterfront development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Alexander J</creatorcontrib><creatorcontrib>Ryan, Elisabeth A</creatorcontrib><creatorcontrib>Wang, Qingpu</creatorcontrib><creatorcontrib>Greene, David</creatorcontrib><creatorcontrib>Subban, Chinmayee V</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Alexander J</au><au>Ryan, Elisabeth A</au><au>Wang, Qingpu</au><au>Greene, David</au><au>Subban, Chinmayee V</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulse Electrodeposition for Carbonate-Rich Deposits from Seawater</atitle><jtitle>Sustainability</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>23</issue><spage>10776</spage><pages>10776-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Seawater electrodeposition is gaining renewed interest in the context of sustainable development, both to build climate-resilient coastal infrastructure and for ocean-based decarbonization applications. Most of the applications benefit from CaCO3-rich deposits, but constant-voltage electrodeposition results in a mixture of CaCO3 and Mg(OH)2, especially at higher voltages where precipitation rates are more desirable. The use of pulse voltages can help control interfacial pH that dictates the precipitation reactions. Here, we explore the use of pulse electrodeposition as a function of pulse frequency and duty cycle to control deposit composition. The most CaCO3-rich deposits were obtained under 10 Hz frequency and 10% duty cycle conditions for the voltage window investigated (−0.8 V to −1.2 V vs. SCE). While pulsing the voltage increases the amount of CaCO3 deposited, the energy required per gram of CaCO3 is significantly higher (14.5×) when compared to the base case of applying a constant voltage of −0.8 V vs. SCE. Further optimization of pulse conditions, electrode materials, and system configuration could lead to finding parameters that result in exclusively carbonate deposits without compromising precipitation rates, which may prove to be more useful for corrosion protection, coastal infrastructure, and other applications in sustainable development.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su162310776</doi><orcidid>https://orcid.org/0000-0002-5470-8608</orcidid><orcidid>https://orcid.org/0000000254708608</orcidid><orcidid>https://orcid.org/0000000165732366</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-12, Vol.16 (23), p.10776
issn 2071-1050
2071-1050
language eng
recordid cdi_osti_scitechconnect_2496252
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects calcareous deposits
carbon mineralization
Carbonates
Corrosion
Corrosion and anti-corrosives
Electrochemical reactions
electrodeposition
Electrodes
ENVIRONMENTAL SCIENCES
Experiments
Infrastructure
Low carbon steel
Precipitation
Sea-water
Seawater
voltage pulsing
Waterfront development
title Pulse Electrodeposition for Carbonate-Rich Deposits from Seawater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulse%20Electrodeposition%20for%20Carbonate-Rich%20Deposits%20from%20Seawater&rft.jtitle=Sustainability&rft.au=Robinson,%20Alexander%20J&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2024-12-01&rft.volume=16&rft.issue=23&rft.spage=10776&rft.pages=10776-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su162310776&rft_dat=%3Cgale_osti_%3EA820019803%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144179563&rft_id=info:pmid/&rft_galeid=A820019803&rfr_iscdi=true