Pulse Electrodeposition for Carbonate-Rich Deposits from Seawater
Seawater electrodeposition is gaining renewed interest in the context of sustainable development, both to build climate-resilient coastal infrastructure and for ocean-based decarbonization applications. Most of the applications benefit from CaCO3-rich deposits, but constant-voltage electrodeposition...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-12, Vol.16 (23), p.10776 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 10776 |
container_title | Sustainability |
container_volume | 16 |
creator | Robinson, Alexander J Ryan, Elisabeth A Wang, Qingpu Greene, David Subban, Chinmayee V |
description | Seawater electrodeposition is gaining renewed interest in the context of sustainable development, both to build climate-resilient coastal infrastructure and for ocean-based decarbonization applications. Most of the applications benefit from CaCO3-rich deposits, but constant-voltage electrodeposition results in a mixture of CaCO3 and Mg(OH)2, especially at higher voltages where precipitation rates are more desirable. The use of pulse voltages can help control interfacial pH that dictates the precipitation reactions. Here, we explore the use of pulse electrodeposition as a function of pulse frequency and duty cycle to control deposit composition. The most CaCO3-rich deposits were obtained under 10 Hz frequency and 10% duty cycle conditions for the voltage window investigated (−0.8 V to −1.2 V vs. SCE). While pulsing the voltage increases the amount of CaCO3 deposited, the energy required per gram of CaCO3 is significantly higher (14.5×) when compared to the base case of applying a constant voltage of −0.8 V vs. SCE. Further optimization of pulse conditions, electrode materials, and system configuration could lead to finding parameters that result in exclusively carbonate deposits without compromising precipitation rates, which may prove to be more useful for corrosion protection, coastal infrastructure, and other applications in sustainable development. |
doi_str_mv | 10.3390/su162310776 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2496252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A820019803</galeid><sourcerecordid>A820019803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-1372f1e95bdc12e9d168ba4fa4c0c81945a4fc8e3ecaada72640b6c6970efa603</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhhdRsNSe_AOLnkS25mM3uzmWWrVQUFo9h2x20qa0m5pkUf-9KevBzhzm65mXgUmSa4zGlHL04DvMCMWoLNlZMiCoxBlGBTr_l18mI--3KBqlmGM2SCZv3c5DOtuBCs42cLDeBGPbVFuXTqWrbSsDZEujNuljP_WpdnafrkB-xZG7Si60jBqjvzhMPp5m79OXbPH6PJ9OFpkiFQsZpiXRGHhRNwoT4A1mVS1zLXOFVIV5XsRCVUBBSdnIkrAc1UwxXiLQkiE6TG56XeuDEV6ZAGqjbNvGywXJOSMFidBtDx2c_ezAB7G1nWvjXYLiPMclLxiN1Lin1nIHwrTaBidV9Ab2JkqCNrE_qQhCmFfouHB3shCZAN9hLTvvxXy1PGXve1Y5670DLQ7O7KX7ERiJ46PEv0fRXzkjgz8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144179563</pqid></control><display><type>article</type><title>Pulse Electrodeposition for Carbonate-Rich Deposits from Seawater</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Robinson, Alexander J ; Ryan, Elisabeth A ; Wang, Qingpu ; Greene, David ; Subban, Chinmayee V</creator><creatorcontrib>Robinson, Alexander J ; Ryan, Elisabeth A ; Wang, Qingpu ; Greene, David ; Subban, Chinmayee V ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Seawater electrodeposition is gaining renewed interest in the context of sustainable development, both to build climate-resilient coastal infrastructure and for ocean-based decarbonization applications. Most of the applications benefit from CaCO3-rich deposits, but constant-voltage electrodeposition results in a mixture of CaCO3 and Mg(OH)2, especially at higher voltages where precipitation rates are more desirable. The use of pulse voltages can help control interfacial pH that dictates the precipitation reactions. Here, we explore the use of pulse electrodeposition as a function of pulse frequency and duty cycle to control deposit composition. The most CaCO3-rich deposits were obtained under 10 Hz frequency and 10% duty cycle conditions for the voltage window investigated (−0.8 V to −1.2 V vs. SCE). While pulsing the voltage increases the amount of CaCO3 deposited, the energy required per gram of CaCO3 is significantly higher (14.5×) when compared to the base case of applying a constant voltage of −0.8 V vs. SCE. Further optimization of pulse conditions, electrode materials, and system configuration could lead to finding parameters that result in exclusively carbonate deposits without compromising precipitation rates, which may prove to be more useful for corrosion protection, coastal infrastructure, and other applications in sustainable development.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su162310776</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>calcareous deposits ; carbon mineralization ; Carbonates ; Corrosion ; Corrosion and anti-corrosives ; Electrochemical reactions ; electrodeposition ; Electrodes ; ENVIRONMENTAL SCIENCES ; Experiments ; Infrastructure ; Low carbon steel ; Precipitation ; Sea-water ; Seawater ; voltage pulsing ; Waterfront development</subject><ispartof>Sustainability, 2024-12, Vol.16 (23), p.10776</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-1372f1e95bdc12e9d168ba4fa4c0c81945a4fc8e3ecaada72640b6c6970efa603</cites><orcidid>0000-0002-5470-8608 ; 0000000254708608 ; 0000000165732366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2496252$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Robinson, Alexander J</creatorcontrib><creatorcontrib>Ryan, Elisabeth A</creatorcontrib><creatorcontrib>Wang, Qingpu</creatorcontrib><creatorcontrib>Greene, David</creatorcontrib><creatorcontrib>Subban, Chinmayee V</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Pulse Electrodeposition for Carbonate-Rich Deposits from Seawater</title><title>Sustainability</title><description>Seawater electrodeposition is gaining renewed interest in the context of sustainable development, both to build climate-resilient coastal infrastructure and for ocean-based decarbonization applications. Most of the applications benefit from CaCO3-rich deposits, but constant-voltage electrodeposition results in a mixture of CaCO3 and Mg(OH)2, especially at higher voltages where precipitation rates are more desirable. The use of pulse voltages can help control interfacial pH that dictates the precipitation reactions. Here, we explore the use of pulse electrodeposition as a function of pulse frequency and duty cycle to control deposit composition. The most CaCO3-rich deposits were obtained under 10 Hz frequency and 10% duty cycle conditions for the voltage window investigated (−0.8 V to −1.2 V vs. SCE). While pulsing the voltage increases the amount of CaCO3 deposited, the energy required per gram of CaCO3 is significantly higher (14.5×) when compared to the base case of applying a constant voltage of −0.8 V vs. SCE. Further optimization of pulse conditions, electrode materials, and system configuration could lead to finding parameters that result in exclusively carbonate deposits without compromising precipitation rates, which may prove to be more useful for corrosion protection, coastal infrastructure, and other applications in sustainable development.</description><subject>calcareous deposits</subject><subject>carbon mineralization</subject><subject>Carbonates</subject><subject>Corrosion</subject><subject>Corrosion and anti-corrosives</subject><subject>Electrochemical reactions</subject><subject>electrodeposition</subject><subject>Electrodes</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Experiments</subject><subject>Infrastructure</subject><subject>Low carbon steel</subject><subject>Precipitation</subject><subject>Sea-water</subject><subject>Seawater</subject><subject>voltage pulsing</subject><subject>Waterfront development</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkU1LAzEQhhdRsNSe_AOLnkS25mM3uzmWWrVQUFo9h2x20qa0m5pkUf-9KevBzhzm65mXgUmSa4zGlHL04DvMCMWoLNlZMiCoxBlGBTr_l18mI--3KBqlmGM2SCZv3c5DOtuBCs42cLDeBGPbVFuXTqWrbSsDZEujNuljP_WpdnafrkB-xZG7Si60jBqjvzhMPp5m79OXbPH6PJ9OFpkiFQsZpiXRGHhRNwoT4A1mVS1zLXOFVIV5XsRCVUBBSdnIkrAc1UwxXiLQkiE6TG56XeuDEV6ZAGqjbNvGywXJOSMFidBtDx2c_ezAB7G1nWvjXYLiPMclLxiN1Lin1nIHwrTaBidV9Ab2JkqCNrE_qQhCmFfouHB3shCZAN9hLTvvxXy1PGXve1Y5670DLQ7O7KX7ERiJ46PEv0fRXzkjgz8</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Robinson, Alexander J</creator><creator>Ryan, Elisabeth A</creator><creator>Wang, Qingpu</creator><creator>Greene, David</creator><creator>Subban, Chinmayee V</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5470-8608</orcidid><orcidid>https://orcid.org/0000000254708608</orcidid><orcidid>https://orcid.org/0000000165732366</orcidid></search><sort><creationdate>20241201</creationdate><title>Pulse Electrodeposition for Carbonate-Rich Deposits from Seawater</title><author>Robinson, Alexander J ; Ryan, Elisabeth A ; Wang, Qingpu ; Greene, David ; Subban, Chinmayee V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-1372f1e95bdc12e9d168ba4fa4c0c81945a4fc8e3ecaada72640b6c6970efa603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>calcareous deposits</topic><topic>carbon mineralization</topic><topic>Carbonates</topic><topic>Corrosion</topic><topic>Corrosion and anti-corrosives</topic><topic>Electrochemical reactions</topic><topic>electrodeposition</topic><topic>Electrodes</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Experiments</topic><topic>Infrastructure</topic><topic>Low carbon steel</topic><topic>Precipitation</topic><topic>Sea-water</topic><topic>Seawater</topic><topic>voltage pulsing</topic><topic>Waterfront development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Alexander J</creatorcontrib><creatorcontrib>Ryan, Elisabeth A</creatorcontrib><creatorcontrib>Wang, Qingpu</creatorcontrib><creatorcontrib>Greene, David</creatorcontrib><creatorcontrib>Subban, Chinmayee V</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Alexander J</au><au>Ryan, Elisabeth A</au><au>Wang, Qingpu</au><au>Greene, David</au><au>Subban, Chinmayee V</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulse Electrodeposition for Carbonate-Rich Deposits from Seawater</atitle><jtitle>Sustainability</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>23</issue><spage>10776</spage><pages>10776-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Seawater electrodeposition is gaining renewed interest in the context of sustainable development, both to build climate-resilient coastal infrastructure and for ocean-based decarbonization applications. Most of the applications benefit from CaCO3-rich deposits, but constant-voltage electrodeposition results in a mixture of CaCO3 and Mg(OH)2, especially at higher voltages where precipitation rates are more desirable. The use of pulse voltages can help control interfacial pH that dictates the precipitation reactions. Here, we explore the use of pulse electrodeposition as a function of pulse frequency and duty cycle to control deposit composition. The most CaCO3-rich deposits were obtained under 10 Hz frequency and 10% duty cycle conditions for the voltage window investigated (−0.8 V to −1.2 V vs. SCE). While pulsing the voltage increases the amount of CaCO3 deposited, the energy required per gram of CaCO3 is significantly higher (14.5×) when compared to the base case of applying a constant voltage of −0.8 V vs. SCE. Further optimization of pulse conditions, electrode materials, and system configuration could lead to finding parameters that result in exclusively carbonate deposits without compromising precipitation rates, which may prove to be more useful for corrosion protection, coastal infrastructure, and other applications in sustainable development.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su162310776</doi><orcidid>https://orcid.org/0000-0002-5470-8608</orcidid><orcidid>https://orcid.org/0000000254708608</orcidid><orcidid>https://orcid.org/0000000165732366</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-12, Vol.16 (23), p.10776 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_osti_scitechconnect_2496252 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | calcareous deposits carbon mineralization Carbonates Corrosion Corrosion and anti-corrosives Electrochemical reactions electrodeposition Electrodes ENVIRONMENTAL SCIENCES Experiments Infrastructure Low carbon steel Precipitation Sea-water Seawater voltage pulsing Waterfront development |
title | Pulse Electrodeposition for Carbonate-Rich Deposits from Seawater |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulse%20Electrodeposition%20for%20Carbonate-Rich%20Deposits%20from%20Seawater&rft.jtitle=Sustainability&rft.au=Robinson,%20Alexander%20J&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2024-12-01&rft.volume=16&rft.issue=23&rft.spage=10776&rft.pages=10776-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su162310776&rft_dat=%3Cgale_osti_%3EA820019803%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144179563&rft_id=info:pmid/&rft_galeid=A820019803&rfr_iscdi=true |