Thermodynamics and transport in molten chloride salts and their mixtures

Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroproces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2025-01, Vol.27 (3), p.1604-1615
Hauptverfasser: Cockrell, C, Withington, M, Devereux, H L, Elena, A M, Todorov, I T, Liu, Z K, Shang, S L, McCloy, J S, Bingham, P A, Trachenko, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1615
container_issue 3
container_start_page 1604
container_title Physical chemistry chemical physics : PCCP
container_volume 27
creator Cockrell, C
Withington, M
Devereux, H L
Elena, A M
Todorov, I T
Liu, Z K
Shang, S L
McCloy, J S
Bingham, P A
Trachenko, K
description Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids. Using recent developments in the theory of liquid thermophysical properties, we interpret our results on the basis of collective atomistic dynamics (phonons). We find that the properties of ionic liquids are well explained by their collective dynamics, as in simple liquids. In particular, we relate the decrease of heat capacity, viscosity, and thermal conductivity to the loss of transverse phonons from the liquid spectrum. We observe the singular dependence of the isochoric heat capacity on the mean free path of phonons, and the obeyance of the Stokes-Einstein equation relating the viscosity to the mass diffusion. The transport properties of mixtures are more complicated compared to simple liquids, however viscosity and thermal conductivity are well guided by fundamental bounds proposed recently. The kinematic viscosity and thermal diffusivity lie very close to one another and obey the theoretical fundamental bounds determined solely by fundamental physical constants. Our results show that recent advances in the theoretical physics of liquids are applicable to molten salts mixtures, and therefore that the evolution and interplay of properties common to all liquids may act as a guide to a deeper understanding of these mixtures.
doi_str_mv 10.1039/d4cp04180a
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2483641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3155629675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-dcd355eda4875921ece1bef7eab0caed920aef2a6c16988858722e455c5e94d33</originalsourceid><addsrcrecordid>eNpd0ctKAzEUBuAgiq2XjQ8gg25EGM11JlmWegVBF7oe0uSUpswkNcmAfXtHW7twdc7i44f_HITOCL4hmKlby80KcyKx3kNjwitWKiz5_m6vqxE6SmmJMSaCsEM0YqomhEs5Rk_vC4hdsGuvO2dSob0tctQ-rULMhfNFF9oMvjCLNkRnoUi6zVu2ABeLzn3lPkI6QQdz3SY43c5j9PFw_z59Kl9eH5-nk5fSUEZyaY1lQoDVXNZCUQIGyAzmNegZNhqsoljDnOrKkEpJKYWsKQUuhBGguGXsGF1sckPKrknGZTALE7wHkxvKJas4GdDVBq1i-Owh5aZzyUDbag-hTw0bynMlKcUDvfxHl6GPfqgwKCEqqqpaDOp6o0wMKUWYN6voOh3XDcHNzxOaOz59-33CZMDn28h-1oHd0b-rs28snYFk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155629675</pqid></control><display><type>article</type><title>Thermodynamics and transport in molten chloride salts and their mixtures</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cockrell, C ; Withington, M ; Devereux, H L ; Elena, A M ; Todorov, I T ; Liu, Z K ; Shang, S L ; McCloy, J S ; Bingham, P A ; Trachenko, K</creator><creatorcontrib>Cockrell, C ; Withington, M ; Devereux, H L ; Elena, A M ; Todorov, I T ; Liu, Z K ; Shang, S L ; McCloy, J S ; Bingham, P A ; Trachenko, K</creatorcontrib><description>Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids. Using recent developments in the theory of liquid thermophysical properties, we interpret our results on the basis of collective atomistic dynamics (phonons). We find that the properties of ionic liquids are well explained by their collective dynamics, as in simple liquids. In particular, we relate the decrease of heat capacity, viscosity, and thermal conductivity to the loss of transverse phonons from the liquid spectrum. We observe the singular dependence of the isochoric heat capacity on the mean free path of phonons, and the obeyance of the Stokes-Einstein equation relating the viscosity to the mass diffusion. The transport properties of mixtures are more complicated compared to simple liquids, however viscosity and thermal conductivity are well guided by fundamental bounds proposed recently. The kinematic viscosity and thermal diffusivity lie very close to one another and obey the theoretical fundamental bounds determined solely by fundamental physical constants. Our results show that recent advances in the theoretical physics of liquids are applicable to molten salts mixtures, and therefore that the evolution and interplay of properties common to all liquids may act as a guide to a deeper understanding of these mixtures.</description><identifier>ISSN: 1463-9076</identifier><identifier>ISSN: 1463-9084</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp04180a</identifier><identifier>PMID: 39711488</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chlorides ; Einstein equations ; Heat conductivity ; Heat transfer ; Ionic liquids ; Kinematics ; Mixtures ; Molecular dynamics ; Molten salts ; Nuclear reactors ; Phonons ; Photovoltaic cells ; Physical properties ; Solar cells ; Specific heat ; Theoretical physics ; Thermal conductivity ; Thermal diffusivity ; Thermodynamics ; Thermophysical properties ; Transport properties ; Viscosity</subject><ispartof>Physical chemistry chemical physics : PCCP, 2025-01, Vol.27 (3), p.1604-1615</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c231t-dcd355eda4875921ece1bef7eab0caed920aef2a6c16988858722e455c5e94d33</cites><orcidid>0000-0001-7476-7771 ; 0000-0002-8501-7287 ; 0000-0001-9449-7350 ; 0000-0001-7275-1784 ; 0000000172751784 ; 0000000285017287 ; 0000000174767771 ; 0000000194497350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39711488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2483641$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cockrell, C</creatorcontrib><creatorcontrib>Withington, M</creatorcontrib><creatorcontrib>Devereux, H L</creatorcontrib><creatorcontrib>Elena, A M</creatorcontrib><creatorcontrib>Todorov, I T</creatorcontrib><creatorcontrib>Liu, Z K</creatorcontrib><creatorcontrib>Shang, S L</creatorcontrib><creatorcontrib>McCloy, J S</creatorcontrib><creatorcontrib>Bingham, P A</creatorcontrib><creatorcontrib>Trachenko, K</creatorcontrib><title>Thermodynamics and transport in molten chloride salts and their mixtures</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids. Using recent developments in the theory of liquid thermophysical properties, we interpret our results on the basis of collective atomistic dynamics (phonons). We find that the properties of ionic liquids are well explained by their collective dynamics, as in simple liquids. In particular, we relate the decrease of heat capacity, viscosity, and thermal conductivity to the loss of transverse phonons from the liquid spectrum. We observe the singular dependence of the isochoric heat capacity on the mean free path of phonons, and the obeyance of the Stokes-Einstein equation relating the viscosity to the mass diffusion. The transport properties of mixtures are more complicated compared to simple liquids, however viscosity and thermal conductivity are well guided by fundamental bounds proposed recently. The kinematic viscosity and thermal diffusivity lie very close to one another and obey the theoretical fundamental bounds determined solely by fundamental physical constants. Our results show that recent advances in the theoretical physics of liquids are applicable to molten salts mixtures, and therefore that the evolution and interplay of properties common to all liquids may act as a guide to a deeper understanding of these mixtures.</description><subject>Chlorides</subject><subject>Einstein equations</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Ionic liquids</subject><subject>Kinematics</subject><subject>Mixtures</subject><subject>Molecular dynamics</subject><subject>Molten salts</subject><subject>Nuclear reactors</subject><subject>Phonons</subject><subject>Photovoltaic cells</subject><subject>Physical properties</subject><subject>Solar cells</subject><subject>Specific heat</subject><subject>Theoretical physics</subject><subject>Thermal conductivity</subject><subject>Thermal diffusivity</subject><subject>Thermodynamics</subject><subject>Thermophysical properties</subject><subject>Transport properties</subject><subject>Viscosity</subject><issn>1463-9076</issn><issn>1463-9084</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpd0ctKAzEUBuAgiq2XjQ8gg25EGM11JlmWegVBF7oe0uSUpswkNcmAfXtHW7twdc7i44f_HITOCL4hmKlby80KcyKx3kNjwitWKiz5_m6vqxE6SmmJMSaCsEM0YqomhEs5Rk_vC4hdsGuvO2dSob0tctQ-rULMhfNFF9oMvjCLNkRnoUi6zVu2ABeLzn3lPkI6QQdz3SY43c5j9PFw_z59Kl9eH5-nk5fSUEZyaY1lQoDVXNZCUQIGyAzmNegZNhqsoljDnOrKkEpJKYWsKQUuhBGguGXsGF1sckPKrknGZTALE7wHkxvKJas4GdDVBq1i-Owh5aZzyUDbag-hTw0bynMlKcUDvfxHl6GPfqgwKCEqqqpaDOp6o0wMKUWYN6voOh3XDcHNzxOaOz59-33CZMDn28h-1oHd0b-rs28snYFk</recordid><startdate>20250115</startdate><enddate>20250115</enddate><creator>Cockrell, C</creator><creator>Withington, M</creator><creator>Devereux, H L</creator><creator>Elena, A M</creator><creator>Todorov, I T</creator><creator>Liu, Z K</creator><creator>Shang, S L</creator><creator>McCloy, J S</creator><creator>Bingham, P A</creator><creator>Trachenko, K</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7476-7771</orcidid><orcidid>https://orcid.org/0000-0002-8501-7287</orcidid><orcidid>https://orcid.org/0000-0001-9449-7350</orcidid><orcidid>https://orcid.org/0000-0001-7275-1784</orcidid><orcidid>https://orcid.org/0000000172751784</orcidid><orcidid>https://orcid.org/0000000285017287</orcidid><orcidid>https://orcid.org/0000000174767771</orcidid><orcidid>https://orcid.org/0000000194497350</orcidid></search><sort><creationdate>20250115</creationdate><title>Thermodynamics and transport in molten chloride salts and their mixtures</title><author>Cockrell, C ; Withington, M ; Devereux, H L ; Elena, A M ; Todorov, I T ; Liu, Z K ; Shang, S L ; McCloy, J S ; Bingham, P A ; Trachenko, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-dcd355eda4875921ece1bef7eab0caed920aef2a6c16988858722e455c5e94d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Chlorides</topic><topic>Einstein equations</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Ionic liquids</topic><topic>Kinematics</topic><topic>Mixtures</topic><topic>Molecular dynamics</topic><topic>Molten salts</topic><topic>Nuclear reactors</topic><topic>Phonons</topic><topic>Photovoltaic cells</topic><topic>Physical properties</topic><topic>Solar cells</topic><topic>Specific heat</topic><topic>Theoretical physics</topic><topic>Thermal conductivity</topic><topic>Thermal diffusivity</topic><topic>Thermodynamics</topic><topic>Thermophysical properties</topic><topic>Transport properties</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cockrell, C</creatorcontrib><creatorcontrib>Withington, M</creatorcontrib><creatorcontrib>Devereux, H L</creatorcontrib><creatorcontrib>Elena, A M</creatorcontrib><creatorcontrib>Todorov, I T</creatorcontrib><creatorcontrib>Liu, Z K</creatorcontrib><creatorcontrib>Shang, S L</creatorcontrib><creatorcontrib>McCloy, J S</creatorcontrib><creatorcontrib>Bingham, P A</creatorcontrib><creatorcontrib>Trachenko, K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cockrell, C</au><au>Withington, M</au><au>Devereux, H L</au><au>Elena, A M</au><au>Todorov, I T</au><au>Liu, Z K</au><au>Shang, S L</au><au>McCloy, J S</au><au>Bingham, P A</au><au>Trachenko, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics and transport in molten chloride salts and their mixtures</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2025-01-15</date><risdate>2025</risdate><volume>27</volume><issue>3</issue><spage>1604</spage><epage>1615</epage><pages>1604-1615</pages><issn>1463-9076</issn><issn>1463-9084</issn><eissn>1463-9084</eissn><abstract>Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids. Using recent developments in the theory of liquid thermophysical properties, we interpret our results on the basis of collective atomistic dynamics (phonons). We find that the properties of ionic liquids are well explained by their collective dynamics, as in simple liquids. In particular, we relate the decrease of heat capacity, viscosity, and thermal conductivity to the loss of transverse phonons from the liquid spectrum. We observe the singular dependence of the isochoric heat capacity on the mean free path of phonons, and the obeyance of the Stokes-Einstein equation relating the viscosity to the mass diffusion. The transport properties of mixtures are more complicated compared to simple liquids, however viscosity and thermal conductivity are well guided by fundamental bounds proposed recently. The kinematic viscosity and thermal diffusivity lie very close to one another and obey the theoretical fundamental bounds determined solely by fundamental physical constants. Our results show that recent advances in the theoretical physics of liquids are applicable to molten salts mixtures, and therefore that the evolution and interplay of properties common to all liquids may act as a guide to a deeper understanding of these mixtures.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39711488</pmid><doi>10.1039/d4cp04180a</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7476-7771</orcidid><orcidid>https://orcid.org/0000-0002-8501-7287</orcidid><orcidid>https://orcid.org/0000-0001-9449-7350</orcidid><orcidid>https://orcid.org/0000-0001-7275-1784</orcidid><orcidid>https://orcid.org/0000000172751784</orcidid><orcidid>https://orcid.org/0000000285017287</orcidid><orcidid>https://orcid.org/0000000174767771</orcidid><orcidid>https://orcid.org/0000000194497350</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2025-01, Vol.27 (3), p.1604-1615
issn 1463-9076
1463-9084
1463-9084
language eng
recordid cdi_osti_scitechconnect_2483641
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chlorides
Einstein equations
Heat conductivity
Heat transfer
Ionic liquids
Kinematics
Mixtures
Molecular dynamics
Molten salts
Nuclear reactors
Phonons
Photovoltaic cells
Physical properties
Solar cells
Specific heat
Theoretical physics
Thermal conductivity
Thermal diffusivity
Thermodynamics
Thermophysical properties
Transport properties
Viscosity
title Thermodynamics and transport in molten chloride salts and their mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20and%20transport%20in%20molten%20chloride%20salts%20and%20their%20mixtures&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Cockrell,%20C&rft.date=2025-01-15&rft.volume=27&rft.issue=3&rft.spage=1604&rft.epage=1615&rft.pages=1604-1615&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp04180a&rft_dat=%3Cproquest_osti_%3E3155629675%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155629675&rft_id=info:pmid/39711488&rfr_iscdi=true