Convergent Concordant Mode Approach for Molecular Vibrations: CMA‑2
The concordant mode approach (CMA) is a promising new scheme for dramatically increasing the system size and level of theory achievable in quantum chemical computations of molecular vibrational frequencies. Here, we achieve advances in the CMA hierarchy by computations targeting CCSD(T)/cc-pVTZ (co...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2024-12, Vol.20 (24), p.10886-10898 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10898 |
---|---|
container_issue | 24 |
container_start_page | 10886 |
container_title | Journal of chemical theory and computation |
container_volume | 20 |
creator | Kitzmiller, Nathaniel L. Lahm, Mitchell E. Olive Dornshuld, Laura N. Jin, Jincan Allen, Wesley D. Schaefer III, Henry F. |
description | The concordant mode approach (CMA) is a promising new scheme for dramatically increasing the system size and level of theory achievable in quantum chemical computations of molecular vibrational frequencies. Here, we achieve advances in the CMA hierarchy by computations targeting CCSD(T)/cc-pVTZ (coupled cluster singles and doubles with perturbative triples using a correlation-consistent polarized-valence triple-ζ basis set) benchmarks within the G2 molecular test set, executing a statistical analysis for 1501 frequencies from 111 compounds and then separately solving the refractory case of pyridine. First, MP2/cc-pVTZ (second-order Møller–Plesset perturbation theory with the same basis set) proves to be an excellent and preferred choice for generating the underlying (Level B) normal modes of the CMA scheme. Utilizing this Level B within the CMA-0A method reproduces the 1501 benchmark frequencies with a mean absolute error (MAE) of only 0.11 cm–1 and an attendant standard deviation of 0.49 cm–1. Second, a convergent CMA-2 method is constituted that allows efficient computation of higher level (Level A) frequencies to any reasonable accuracy threshold by using only Hartree–Fock (HF) and MP2 or density functional theory (DFT) data to generate ξ parameters, which select the sparse off-diagonal force field elements for explicit evaluation at Level A. When Level B = MP2/cc-pVTZ, a cutoff of ξ = 0.02 provides an average maximum absolute error per molecule of only 0.17 cm–1 by incurring merely a 33% increase in average cost over CMA-0A. This CMA-2 method also eradicates the 4 problematic CMA-0A outliers of pyridine with even less effort (ξ = 0.04, 22% increase). Finally, the newly developed CMA procedures are shown to be highly successful when applied to 1-(1H-pyrrol-3-yl)ethanol, a new test molecule with diverse types of vibration. |
doi_str_mv | 10.1021/acs.jctc.4c01240 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_osti_scitechconnect_2481385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146709902</sourcerecordid><originalsourceid>FETCH-LOGICAL-a302t-99aedfd8f269d7126eb4e2047c2a0982599c9db94ebc232c243951b86d8fc89b3</originalsourceid><addsrcrecordid>eNp1UTtPwzAYtBCIlsLOhCImBlL8ysMsqKrKQ2rFAqyW88VpU6VxsZNKbPwF_iK_BJeWCgYW-2Tf3Xf2IXRKcJ9gSq4UuP4cGuhzwIRyvIe6JOIiFDGN93eYpB105NwcY8Y4ZYeow0ScECqSLhoNTb3SdqrrJvAQjM2VhxOT62CwXFqjYBYUxvqTSkNbKRu8lJlVTWlqdx0MJ4PP9w96jA4KVTl9st176Pl29DS8D8ePdw_DwThUDNMmFELpvMjTgsYi9wFinXFNMU-AKixSGgkBIs8E1xlQRoFyJiKSpbGXQCoy1kM3G99lmy10Dj61VZVc2nKh7Js0qpR_b-pyJqdmJQmJE-YX73C-cTCuKaWDstEwA1PXGhpJeUpYGnnSxXaMNa-tdo1clA50Valam9ZJRnicYCEw9VS8oYI1zlld7MIQLNcdSd-RXHcktx15ydnvR-wEP6V4wuWG8C01ra39n_7v9wWJsZ4c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146709902</pqid></control><display><type>article</type><title>Convergent Concordant Mode Approach for Molecular Vibrations: CMA‑2</title><source>ACS Publications</source><creator>Kitzmiller, Nathaniel L. ; Lahm, Mitchell E. ; Olive Dornshuld, Laura N. ; Jin, Jincan ; Allen, Wesley D. ; Schaefer III, Henry F.</creator><creatorcontrib>Kitzmiller, Nathaniel L. ; Lahm, Mitchell E. ; Olive Dornshuld, Laura N. ; Jin, Jincan ; Allen, Wesley D. ; Schaefer III, Henry F.</creatorcontrib><description>The concordant mode approach (CMA) is a promising new scheme for dramatically increasing the system size and level of theory achievable in quantum chemical computations of molecular vibrational frequencies. Here, we achieve advances in the CMA hierarchy by computations targeting CCSD(T)/cc-pVTZ (coupled cluster singles and doubles with perturbative triples using a correlation-consistent polarized-valence triple-ζ basis set) benchmarks within the G2 molecular test set, executing a statistical analysis for 1501 frequencies from 111 compounds and then separately solving the refractory case of pyridine. First, MP2/cc-pVTZ (second-order Møller–Plesset perturbation theory with the same basis set) proves to be an excellent and preferred choice for generating the underlying (Level B) normal modes of the CMA scheme. Utilizing this Level B within the CMA-0A method reproduces the 1501 benchmark frequencies with a mean absolute error (MAE) of only 0.11 cm–1 and an attendant standard deviation of 0.49 cm–1. Second, a convergent CMA-2 method is constituted that allows efficient computation of higher level (Level A) frequencies to any reasonable accuracy threshold by using only Hartree–Fock (HF) and MP2 or density functional theory (DFT) data to generate ξ parameters, which select the sparse off-diagonal force field elements for explicit evaluation at Level A. When Level B = MP2/cc-pVTZ, a cutoff of ξ = 0.02 provides an average maximum absolute error per molecule of only 0.17 cm–1 by incurring merely a 33% increase in average cost over CMA-0A. This CMA-2 method also eradicates the 4 problematic CMA-0A outliers of pyridine with even less effort (ξ = 0.04, 22% increase). Finally, the newly developed CMA procedures are shown to be highly successful when applied to 1-(1H-pyrrol-3-yl)ethanol, a new test molecule with diverse types of vibration.</description><identifier>ISSN: 1549-9618</identifier><identifier>ISSN: 1549-9626</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c01240</identifier><identifier>PMID: 39671297</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Quantum Electronic Structure</subject><ispartof>Journal of chemical theory and computation, 2024-12, Vol.20 (24), p.10886-10898</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a302t-99aedfd8f269d7126eb4e2047c2a0982599c9db94ebc232c243951b86d8fc89b3</cites><orcidid>0000-0002-4288-2297 ; 0000-0003-0252-2083 ; 0000-0002-6123-1115 ; 0000-0001-8908-8157 ; 0000-0002-0618-6497 ; 0000000206186497 ; 0000000242882297 ; 0000000261231115 ; 0000000189088157 ; 0000000302522083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.4c01240$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.4c01240$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39671297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2481385$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitzmiller, Nathaniel L.</creatorcontrib><creatorcontrib>Lahm, Mitchell E.</creatorcontrib><creatorcontrib>Olive Dornshuld, Laura N.</creatorcontrib><creatorcontrib>Jin, Jincan</creatorcontrib><creatorcontrib>Allen, Wesley D.</creatorcontrib><creatorcontrib>Schaefer III, Henry F.</creatorcontrib><title>Convergent Concordant Mode Approach for Molecular Vibrations: CMA‑2</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The concordant mode approach (CMA) is a promising new scheme for dramatically increasing the system size and level of theory achievable in quantum chemical computations of molecular vibrational frequencies. Here, we achieve advances in the CMA hierarchy by computations targeting CCSD(T)/cc-pVTZ (coupled cluster singles and doubles with perturbative triples using a correlation-consistent polarized-valence triple-ζ basis set) benchmarks within the G2 molecular test set, executing a statistical analysis for 1501 frequencies from 111 compounds and then separately solving the refractory case of pyridine. First, MP2/cc-pVTZ (second-order Møller–Plesset perturbation theory with the same basis set) proves to be an excellent and preferred choice for generating the underlying (Level B) normal modes of the CMA scheme. Utilizing this Level B within the CMA-0A method reproduces the 1501 benchmark frequencies with a mean absolute error (MAE) of only 0.11 cm–1 and an attendant standard deviation of 0.49 cm–1. Second, a convergent CMA-2 method is constituted that allows efficient computation of higher level (Level A) frequencies to any reasonable accuracy threshold by using only Hartree–Fock (HF) and MP2 or density functional theory (DFT) data to generate ξ parameters, which select the sparse off-diagonal force field elements for explicit evaluation at Level A. When Level B = MP2/cc-pVTZ, a cutoff of ξ = 0.02 provides an average maximum absolute error per molecule of only 0.17 cm–1 by incurring merely a 33% increase in average cost over CMA-0A. This CMA-2 method also eradicates the 4 problematic CMA-0A outliers of pyridine with even less effort (ξ = 0.04, 22% increase). Finally, the newly developed CMA procedures are shown to be highly successful when applied to 1-(1H-pyrrol-3-yl)ethanol, a new test molecule with diverse types of vibration.</description><subject>Quantum Electronic Structure</subject><issn>1549-9618</issn><issn>1549-9626</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UTtPwzAYtBCIlsLOhCImBlL8ysMsqKrKQ2rFAqyW88VpU6VxsZNKbPwF_iK_BJeWCgYW-2Tf3Xf2IXRKcJ9gSq4UuP4cGuhzwIRyvIe6JOIiFDGN93eYpB105NwcY8Y4ZYeow0ScECqSLhoNTb3SdqrrJvAQjM2VhxOT62CwXFqjYBYUxvqTSkNbKRu8lJlVTWlqdx0MJ4PP9w96jA4KVTl9st176Pl29DS8D8ePdw_DwThUDNMmFELpvMjTgsYi9wFinXFNMU-AKixSGgkBIs8E1xlQRoFyJiKSpbGXQCoy1kM3G99lmy10Dj61VZVc2nKh7Js0qpR_b-pyJqdmJQmJE-YX73C-cTCuKaWDstEwA1PXGhpJeUpYGnnSxXaMNa-tdo1clA50Valam9ZJRnicYCEw9VS8oYI1zlld7MIQLNcdSd-RXHcktx15ydnvR-wEP6V4wuWG8C01ra39n_7v9wWJsZ4c</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Kitzmiller, Nathaniel L.</creator><creator>Lahm, Mitchell E.</creator><creator>Olive Dornshuld, Laura N.</creator><creator>Jin, Jincan</creator><creator>Allen, Wesley D.</creator><creator>Schaefer III, Henry F.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4288-2297</orcidid><orcidid>https://orcid.org/0000-0003-0252-2083</orcidid><orcidid>https://orcid.org/0000-0002-6123-1115</orcidid><orcidid>https://orcid.org/0000-0001-8908-8157</orcidid><orcidid>https://orcid.org/0000-0002-0618-6497</orcidid><orcidid>https://orcid.org/0000000206186497</orcidid><orcidid>https://orcid.org/0000000242882297</orcidid><orcidid>https://orcid.org/0000000261231115</orcidid><orcidid>https://orcid.org/0000000189088157</orcidid><orcidid>https://orcid.org/0000000302522083</orcidid></search><sort><creationdate>20241224</creationdate><title>Convergent Concordant Mode Approach for Molecular Vibrations: CMA‑2</title><author>Kitzmiller, Nathaniel L. ; Lahm, Mitchell E. ; Olive Dornshuld, Laura N. ; Jin, Jincan ; Allen, Wesley D. ; Schaefer III, Henry F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a302t-99aedfd8f269d7126eb4e2047c2a0982599c9db94ebc232c243951b86d8fc89b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Quantum Electronic Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitzmiller, Nathaniel L.</creatorcontrib><creatorcontrib>Lahm, Mitchell E.</creatorcontrib><creatorcontrib>Olive Dornshuld, Laura N.</creatorcontrib><creatorcontrib>Jin, Jincan</creatorcontrib><creatorcontrib>Allen, Wesley D.</creatorcontrib><creatorcontrib>Schaefer III, Henry F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitzmiller, Nathaniel L.</au><au>Lahm, Mitchell E.</au><au>Olive Dornshuld, Laura N.</au><au>Jin, Jincan</au><au>Allen, Wesley D.</au><au>Schaefer III, Henry F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergent Concordant Mode Approach for Molecular Vibrations: CMA‑2</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-12-24</date><risdate>2024</risdate><volume>20</volume><issue>24</issue><spage>10886</spage><epage>10898</epage><pages>10886-10898</pages><issn>1549-9618</issn><issn>1549-9626</issn><eissn>1549-9626</eissn><abstract>The concordant mode approach (CMA) is a promising new scheme for dramatically increasing the system size and level of theory achievable in quantum chemical computations of molecular vibrational frequencies. Here, we achieve advances in the CMA hierarchy by computations targeting CCSD(T)/cc-pVTZ (coupled cluster singles and doubles with perturbative triples using a correlation-consistent polarized-valence triple-ζ basis set) benchmarks within the G2 molecular test set, executing a statistical analysis for 1501 frequencies from 111 compounds and then separately solving the refractory case of pyridine. First, MP2/cc-pVTZ (second-order Møller–Plesset perturbation theory with the same basis set) proves to be an excellent and preferred choice for generating the underlying (Level B) normal modes of the CMA scheme. Utilizing this Level B within the CMA-0A method reproduces the 1501 benchmark frequencies with a mean absolute error (MAE) of only 0.11 cm–1 and an attendant standard deviation of 0.49 cm–1. Second, a convergent CMA-2 method is constituted that allows efficient computation of higher level (Level A) frequencies to any reasonable accuracy threshold by using only Hartree–Fock (HF) and MP2 or density functional theory (DFT) data to generate ξ parameters, which select the sparse off-diagonal force field elements for explicit evaluation at Level A. When Level B = MP2/cc-pVTZ, a cutoff of ξ = 0.02 provides an average maximum absolute error per molecule of only 0.17 cm–1 by incurring merely a 33% increase in average cost over CMA-0A. This CMA-2 method also eradicates the 4 problematic CMA-0A outliers of pyridine with even less effort (ξ = 0.04, 22% increase). Finally, the newly developed CMA procedures are shown to be highly successful when applied to 1-(1H-pyrrol-3-yl)ethanol, a new test molecule with diverse types of vibration.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39671297</pmid><doi>10.1021/acs.jctc.4c01240</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4288-2297</orcidid><orcidid>https://orcid.org/0000-0003-0252-2083</orcidid><orcidid>https://orcid.org/0000-0002-6123-1115</orcidid><orcidid>https://orcid.org/0000-0001-8908-8157</orcidid><orcidid>https://orcid.org/0000-0002-0618-6497</orcidid><orcidid>https://orcid.org/0000000206186497</orcidid><orcidid>https://orcid.org/0000000242882297</orcidid><orcidid>https://orcid.org/0000000261231115</orcidid><orcidid>https://orcid.org/0000000189088157</orcidid><orcidid>https://orcid.org/0000000302522083</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2024-12, Vol.20 (24), p.10886-10898 |
issn | 1549-9618 1549-9626 1549-9626 |
language | eng |
recordid | cdi_osti_scitechconnect_2481385 |
source | ACS Publications |
subjects | Quantum Electronic Structure |
title | Convergent Concordant Mode Approach for Molecular Vibrations: CMA‑2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergent%20Concordant%20Mode%20Approach%20for%20Molecular%20Vibrations:%20CMA%E2%80%912&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Kitzmiller,%20Nathaniel%20L.&rft.date=2024-12-24&rft.volume=20&rft.issue=24&rft.spage=10886&rft.epage=10898&rft.pages=10886-10898&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c01240&rft_dat=%3Cproquest_pubme%3E3146709902%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146709902&rft_id=info:pmid/39671297&rfr_iscdi=true |