Molecular Understanding of Nitrogen Oxide Fixation of Water-Lean Carbon Capture Solvents by Atomistic Modeling

Nitrogen oxides, present in flue gas, can cause negative impacts on amine carbon capture solvents by the formation of heat-stable salts and suspected carcinogens. Thus, to maximize the performance of water-lean solvents, a better understanding of this process in these systems is necessary. Here, a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2024-07, Vol.63 (28), p.12316-12324
Hauptverfasser: Kollias, Loukas, Nguyen, Manh-Thuong, Allec, Sarah I., Malhotra, Deepika, Zhang, Difan, Rousseau, Roger, Glezakou, Vassiliki-Alexandra, Koech, Phillip K., Heldebrant, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12324
container_issue 28
container_start_page 12316
container_title Industrial & engineering chemistry research
container_volume 63
creator Kollias, Loukas
Nguyen, Manh-Thuong
Allec, Sarah I.
Malhotra, Deepika
Zhang, Difan
Rousseau, Roger
Glezakou, Vassiliki-Alexandra
Koech, Phillip K.
Heldebrant, David J.
description Nitrogen oxides, present in flue gas, can cause negative impacts on amine carbon capture solvents by the formation of heat-stable salts and suspected carcinogens. Thus, to maximize the performance of water-lean solvents, a better understanding of this process in these systems is necessary. Here, a computational study for the fixation of the CO2 capture solvent N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (EEMPA) to nitramine/nitrosamine was conducted. The first step involves the dissociation of the NH bond of EEMPA, in which the homolytic mechanism is energetically more favorable than the heterolytic mechanism. The second step involves radical recombination to form N–N bonds. While NO2 directly reacts with EEMPA, NO has almost no effect. However, in the presence of O2, fixation of EEMPA by NO is enhanced via the formation of N2O4 species. Low reaction energies indicate that the formation of nitramine/nitrosamine may be a reversible process, suggesting that EEMPA could be recovered under thermal stripping conditions.
doi_str_mv 10.1021/acs.iecr.4c01143
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2480710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153666542</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-2f01072b009e84faeb56c09796243695d7616e07bffaa88d23cbe0df8e732df03</originalsourceid><addsrcrecordid>eNp1kDFv2zAQhYmgAeKm2TMSnTpUzpEiJXoMjKYtYDdDEmQkKOro0lBIl6QC599XgrNmesP77t3dI-SawZIBZzfG5qVHm5bCAmOiPiMLJjlUEoT8RBaglKqkUvKCfM55DwBSCrEgYRsHtONgEn0KPaZcTOh92NHo6B9fUtxhoPdH3yO980dTfAyz9WwKpmqDJtC1SV2c5VDGhPQhDq8YSqbdG70t8cXn4i3dxh6HKfYLOXdmyHj1rpfk6e7H4_pXtbn_-Xt9u6kM53WpuAMGLe8AVqiEM9jJxsKqXTVc1M1K9m3DGoS2c84YpXpe2w6hdwrbmvcO6kvy9ZQbp_U6W1_Q_rUxBLRFc6GgZTP07QQdUvw3Yi56utbiMJiAccy6ZrJumkYKPqFwQm2KOSd0-pD8i0lvmoGe-9dT_3ruX7_3P418P43Mzj6OKUwPf4z_B1kZicE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153666542</pqid></control><display><type>article</type><title>Molecular Understanding of Nitrogen Oxide Fixation of Water-Lean Carbon Capture Solvents by Atomistic Modeling</title><source>American Chemical Society Journals</source><creator>Kollias, Loukas ; Nguyen, Manh-Thuong ; Allec, Sarah I. ; Malhotra, Deepika ; Zhang, Difan ; Rousseau, Roger ; Glezakou, Vassiliki-Alexandra ; Koech, Phillip K. ; Heldebrant, David J.</creator><creatorcontrib>Kollias, Loukas ; Nguyen, Manh-Thuong ; Allec, Sarah I. ; Malhotra, Deepika ; Zhang, Difan ; Rousseau, Roger ; Glezakou, Vassiliki-Alexandra ; Koech, Phillip K. ; Heldebrant, David J. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>Nitrogen oxides, present in flue gas, can cause negative impacts on amine carbon capture solvents by the formation of heat-stable salts and suspected carcinogens. Thus, to maximize the performance of water-lean solvents, a better understanding of this process in these systems is necessary. Here, a computational study for the fixation of the CO2 capture solvent N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (EEMPA) to nitramine/nitrosamine was conducted. The first step involves the dissociation of the NH bond of EEMPA, in which the homolytic mechanism is energetically more favorable than the heterolytic mechanism. The second step involves radical recombination to form N–N bonds. While NO2 directly reacts with EEMPA, NO has almost no effect. However, in the presence of O2, fixation of EEMPA by NO is enhanced via the formation of N2O4 species. Low reaction energies indicate that the formation of nitramine/nitrosamine may be a reversible process, suggesting that EEMPA could be recovered under thermal stripping conditions.</description><identifier>ISSN: 0888-5885</identifier><identifier>ISSN: 1520-5045</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.4c01143</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applied Chemistry ; atomistic modeling ; carbon ; carbon capture solvents ; carbon dioxide ; CO2 capture ; density functional theory ; dissociation ; fixation ; flue gas ; heat stability ; heterolytic cleavage ; homolytic cleavage ; molecular dynamics ; nitrogen ; nitrogen oxides ; solvents ; species ; water-lean solvents</subject><ispartof>Industrial &amp; engineering chemistry research, 2024-07, Vol.63 (28), p.12316-12324</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a223t-2f01072b009e84faeb56c09796243695d7616e07bffaa88d23cbe0df8e732df03</cites><orcidid>0000-0002-5529-526X ; 0000-0002-0796-6508 ; 0000-0001-7530-2378 ; 0000-0001-6028-7021 ; 0000-0002-1101-3160 ; 0000-0003-1997-0368 ; 0000-0003-1947-0478 ; 0000000207966508 ; 0000000211013160 ; 0000000160287021 ; 0000000319970368 ; 000000025529526X ; 0000000175302378 ; 0000000329960593 ; 0000000319470478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.4c01143$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.4c01143$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2480710$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kollias, Loukas</creatorcontrib><creatorcontrib>Nguyen, Manh-Thuong</creatorcontrib><creatorcontrib>Allec, Sarah I.</creatorcontrib><creatorcontrib>Malhotra, Deepika</creatorcontrib><creatorcontrib>Zhang, Difan</creatorcontrib><creatorcontrib>Rousseau, Roger</creatorcontrib><creatorcontrib>Glezakou, Vassiliki-Alexandra</creatorcontrib><creatorcontrib>Koech, Phillip K.</creatorcontrib><creatorcontrib>Heldebrant, David J.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Molecular Understanding of Nitrogen Oxide Fixation of Water-Lean Carbon Capture Solvents by Atomistic Modeling</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Nitrogen oxides, present in flue gas, can cause negative impacts on amine carbon capture solvents by the formation of heat-stable salts and suspected carcinogens. Thus, to maximize the performance of water-lean solvents, a better understanding of this process in these systems is necessary. Here, a computational study for the fixation of the CO2 capture solvent N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (EEMPA) to nitramine/nitrosamine was conducted. The first step involves the dissociation of the NH bond of EEMPA, in which the homolytic mechanism is energetically more favorable than the heterolytic mechanism. The second step involves radical recombination to form N–N bonds. While NO2 directly reacts with EEMPA, NO has almost no effect. However, in the presence of O2, fixation of EEMPA by NO is enhanced via the formation of N2O4 species. Low reaction energies indicate that the formation of nitramine/nitrosamine may be a reversible process, suggesting that EEMPA could be recovered under thermal stripping conditions.</description><subject>Applied Chemistry</subject><subject>atomistic modeling</subject><subject>carbon</subject><subject>carbon capture solvents</subject><subject>carbon dioxide</subject><subject>CO2 capture</subject><subject>density functional theory</subject><subject>dissociation</subject><subject>fixation</subject><subject>flue gas</subject><subject>heat stability</subject><subject>heterolytic cleavage</subject><subject>homolytic cleavage</subject><subject>molecular dynamics</subject><subject>nitrogen</subject><subject>nitrogen oxides</subject><subject>solvents</subject><subject>species</subject><subject>water-lean solvents</subject><issn>0888-5885</issn><issn>1520-5045</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDFv2zAQhYmgAeKm2TMSnTpUzpEiJXoMjKYtYDdDEmQkKOro0lBIl6QC599XgrNmesP77t3dI-SawZIBZzfG5qVHm5bCAmOiPiMLJjlUEoT8RBaglKqkUvKCfM55DwBSCrEgYRsHtONgEn0KPaZcTOh92NHo6B9fUtxhoPdH3yO980dTfAyz9WwKpmqDJtC1SV2c5VDGhPQhDq8YSqbdG70t8cXn4i3dxh6HKfYLOXdmyHj1rpfk6e7H4_pXtbn_-Xt9u6kM53WpuAMGLe8AVqiEM9jJxsKqXTVc1M1K9m3DGoS2c84YpXpe2w6hdwrbmvcO6kvy9ZQbp_U6W1_Q_rUxBLRFc6GgZTP07QQdUvw3Yi56utbiMJiAccy6ZrJumkYKPqFwQm2KOSd0-pD8i0lvmoGe-9dT_3ruX7_3P418P43Mzj6OKUwPf4z_B1kZicE</recordid><startdate>20240708</startdate><enddate>20240708</enddate><creator>Kollias, Loukas</creator><creator>Nguyen, Manh-Thuong</creator><creator>Allec, Sarah I.</creator><creator>Malhotra, Deepika</creator><creator>Zhang, Difan</creator><creator>Rousseau, Roger</creator><creator>Glezakou, Vassiliki-Alexandra</creator><creator>Koech, Phillip K.</creator><creator>Heldebrant, David J.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5529-526X</orcidid><orcidid>https://orcid.org/0000-0002-0796-6508</orcidid><orcidid>https://orcid.org/0000-0001-7530-2378</orcidid><orcidid>https://orcid.org/0000-0001-6028-7021</orcidid><orcidid>https://orcid.org/0000-0002-1101-3160</orcidid><orcidid>https://orcid.org/0000-0003-1997-0368</orcidid><orcidid>https://orcid.org/0000-0003-1947-0478</orcidid><orcidid>https://orcid.org/0000000207966508</orcidid><orcidid>https://orcid.org/0000000211013160</orcidid><orcidid>https://orcid.org/0000000160287021</orcidid><orcidid>https://orcid.org/0000000319970368</orcidid><orcidid>https://orcid.org/000000025529526X</orcidid><orcidid>https://orcid.org/0000000175302378</orcidid><orcidid>https://orcid.org/0000000329960593</orcidid><orcidid>https://orcid.org/0000000319470478</orcidid></search><sort><creationdate>20240708</creationdate><title>Molecular Understanding of Nitrogen Oxide Fixation of Water-Lean Carbon Capture Solvents by Atomistic Modeling</title><author>Kollias, Loukas ; Nguyen, Manh-Thuong ; Allec, Sarah I. ; Malhotra, Deepika ; Zhang, Difan ; Rousseau, Roger ; Glezakou, Vassiliki-Alexandra ; Koech, Phillip K. ; Heldebrant, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-2f01072b009e84faeb56c09796243695d7616e07bffaa88d23cbe0df8e732df03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied Chemistry</topic><topic>atomistic modeling</topic><topic>carbon</topic><topic>carbon capture solvents</topic><topic>carbon dioxide</topic><topic>CO2 capture</topic><topic>density functional theory</topic><topic>dissociation</topic><topic>fixation</topic><topic>flue gas</topic><topic>heat stability</topic><topic>heterolytic cleavage</topic><topic>homolytic cleavage</topic><topic>molecular dynamics</topic><topic>nitrogen</topic><topic>nitrogen oxides</topic><topic>solvents</topic><topic>species</topic><topic>water-lean solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kollias, Loukas</creatorcontrib><creatorcontrib>Nguyen, Manh-Thuong</creatorcontrib><creatorcontrib>Allec, Sarah I.</creatorcontrib><creatorcontrib>Malhotra, Deepika</creatorcontrib><creatorcontrib>Zhang, Difan</creatorcontrib><creatorcontrib>Rousseau, Roger</creatorcontrib><creatorcontrib>Glezakou, Vassiliki-Alexandra</creatorcontrib><creatorcontrib>Koech, Phillip K.</creatorcontrib><creatorcontrib>Heldebrant, David J.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kollias, Loukas</au><au>Nguyen, Manh-Thuong</au><au>Allec, Sarah I.</au><au>Malhotra, Deepika</au><au>Zhang, Difan</au><au>Rousseau, Roger</au><au>Glezakou, Vassiliki-Alexandra</au><au>Koech, Phillip K.</au><au>Heldebrant, David J.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Understanding of Nitrogen Oxide Fixation of Water-Lean Carbon Capture Solvents by Atomistic Modeling</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2024-07-08</date><risdate>2024</risdate><volume>63</volume><issue>28</issue><spage>12316</spage><epage>12324</epage><pages>12316-12324</pages><issn>0888-5885</issn><issn>1520-5045</issn><eissn>1520-5045</eissn><abstract>Nitrogen oxides, present in flue gas, can cause negative impacts on amine carbon capture solvents by the formation of heat-stable salts and suspected carcinogens. Thus, to maximize the performance of water-lean solvents, a better understanding of this process in these systems is necessary. Here, a computational study for the fixation of the CO2 capture solvent N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (EEMPA) to nitramine/nitrosamine was conducted. The first step involves the dissociation of the NH bond of EEMPA, in which the homolytic mechanism is energetically more favorable than the heterolytic mechanism. The second step involves radical recombination to form N–N bonds. While NO2 directly reacts with EEMPA, NO has almost no effect. However, in the presence of O2, fixation of EEMPA by NO is enhanced via the formation of N2O4 species. Low reaction energies indicate that the formation of nitramine/nitrosamine may be a reversible process, suggesting that EEMPA could be recovered under thermal stripping conditions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.4c01143</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5529-526X</orcidid><orcidid>https://orcid.org/0000-0002-0796-6508</orcidid><orcidid>https://orcid.org/0000-0001-7530-2378</orcidid><orcidid>https://orcid.org/0000-0001-6028-7021</orcidid><orcidid>https://orcid.org/0000-0002-1101-3160</orcidid><orcidid>https://orcid.org/0000-0003-1997-0368</orcidid><orcidid>https://orcid.org/0000-0003-1947-0478</orcidid><orcidid>https://orcid.org/0000000207966508</orcidid><orcidid>https://orcid.org/0000000211013160</orcidid><orcidid>https://orcid.org/0000000160287021</orcidid><orcidid>https://orcid.org/0000000319970368</orcidid><orcidid>https://orcid.org/000000025529526X</orcidid><orcidid>https://orcid.org/0000000175302378</orcidid><orcidid>https://orcid.org/0000000329960593</orcidid><orcidid>https://orcid.org/0000000319470478</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2024-07, Vol.63 (28), p.12316-12324
issn 0888-5885
1520-5045
1520-5045
language eng
recordid cdi_osti_scitechconnect_2480710
source American Chemical Society Journals
subjects Applied Chemistry
atomistic modeling
carbon
carbon capture solvents
carbon dioxide
CO2 capture
density functional theory
dissociation
fixation
flue gas
heat stability
heterolytic cleavage
homolytic cleavage
molecular dynamics
nitrogen
nitrogen oxides
solvents
species
water-lean solvents
title Molecular Understanding of Nitrogen Oxide Fixation of Water-Lean Carbon Capture Solvents by Atomistic Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Understanding%20of%20Nitrogen%20Oxide%20Fixation%20of%20Water-Lean%20Carbon%20Capture%20Solvents%20by%20Atomistic%20Modeling&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kollias,%20Loukas&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-07-08&rft.volume=63&rft.issue=28&rft.spage=12316&rft.epage=12324&rft.pages=12316-12324&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.4c01143&rft_dat=%3Cproquest_osti_%3E3153666542%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153666542&rft_id=info:pmid/&rfr_iscdi=true