Molecular Understanding of Nitrogen Oxide Fixation of Water-Lean Carbon Capture Solvents by Atomistic Modeling
Nitrogen oxides, present in flue gas, can cause negative impacts on amine carbon capture solvents by the formation of heat-stable salts and suspected carcinogens. Thus, to maximize the performance of water-lean solvents, a better understanding of this process in these systems is necessary. Here, a c...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2024-07, Vol.63 (28), p.12316-12324 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12324 |
---|---|
container_issue | 28 |
container_start_page | 12316 |
container_title | Industrial & engineering chemistry research |
container_volume | 63 |
creator | Kollias, Loukas Nguyen, Manh-Thuong Allec, Sarah I. Malhotra, Deepika Zhang, Difan Rousseau, Roger Glezakou, Vassiliki-Alexandra Koech, Phillip K. Heldebrant, David J. |
description | Nitrogen oxides, present in flue gas, can cause negative impacts on amine carbon capture solvents by the formation of heat-stable salts and suspected carcinogens. Thus, to maximize the performance of water-lean solvents, a better understanding of this process in these systems is necessary. Here, a computational study for the fixation of the CO2 capture solvent N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (EEMPA) to nitramine/nitrosamine was conducted. The first step involves the dissociation of the NH bond of EEMPA, in which the homolytic mechanism is energetically more favorable than the heterolytic mechanism. The second step involves radical recombination to form N–N bonds. While NO2 directly reacts with EEMPA, NO has almost no effect. However, in the presence of O2, fixation of EEMPA by NO is enhanced via the formation of N2O4 species. Low reaction energies indicate that the formation of nitramine/nitrosamine may be a reversible process, suggesting that EEMPA could be recovered under thermal stripping conditions. |
doi_str_mv | 10.1021/acs.iecr.4c01143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2480710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153666542</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-2f01072b009e84faeb56c09796243695d7616e07bffaa88d23cbe0df8e732df03</originalsourceid><addsrcrecordid>eNp1kDFv2zAQhYmgAeKm2TMSnTpUzpEiJXoMjKYtYDdDEmQkKOro0lBIl6QC599XgrNmesP77t3dI-SawZIBZzfG5qVHm5bCAmOiPiMLJjlUEoT8RBaglKqkUvKCfM55DwBSCrEgYRsHtONgEn0KPaZcTOh92NHo6B9fUtxhoPdH3yO980dTfAyz9WwKpmqDJtC1SV2c5VDGhPQhDq8YSqbdG70t8cXn4i3dxh6HKfYLOXdmyHj1rpfk6e7H4_pXtbn_-Xt9u6kM53WpuAMGLe8AVqiEM9jJxsKqXTVc1M1K9m3DGoS2c84YpXpe2w6hdwrbmvcO6kvy9ZQbp_U6W1_Q_rUxBLRFc6GgZTP07QQdUvw3Yi56utbiMJiAccy6ZrJumkYKPqFwQm2KOSd0-pD8i0lvmoGe-9dT_3ruX7_3P418P43Mzj6OKUwPf4z_B1kZicE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153666542</pqid></control><display><type>article</type><title>Molecular Understanding of Nitrogen Oxide Fixation of Water-Lean Carbon Capture Solvents by Atomistic Modeling</title><source>American Chemical Society Journals</source><creator>Kollias, Loukas ; Nguyen, Manh-Thuong ; Allec, Sarah I. ; Malhotra, Deepika ; Zhang, Difan ; Rousseau, Roger ; Glezakou, Vassiliki-Alexandra ; Koech, Phillip K. ; Heldebrant, David J.</creator><creatorcontrib>Kollias, Loukas ; Nguyen, Manh-Thuong ; Allec, Sarah I. ; Malhotra, Deepika ; Zhang, Difan ; Rousseau, Roger ; Glezakou, Vassiliki-Alexandra ; Koech, Phillip K. ; Heldebrant, David J. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>Nitrogen oxides, present in flue gas, can cause negative impacts on amine carbon capture solvents by the formation of heat-stable salts and suspected carcinogens. Thus, to maximize the performance of water-lean solvents, a better understanding of this process in these systems is necessary. Here, a computational study for the fixation of the CO2 capture solvent N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (EEMPA) to nitramine/nitrosamine was conducted. The first step involves the dissociation of the NH bond of EEMPA, in which the homolytic mechanism is energetically more favorable than the heterolytic mechanism. The second step involves radical recombination to form N–N bonds. While NO2 directly reacts with EEMPA, NO has almost no effect. However, in the presence of O2, fixation of EEMPA by NO is enhanced via the formation of N2O4 species. Low reaction energies indicate that the formation of nitramine/nitrosamine may be a reversible process, suggesting that EEMPA could be recovered under thermal stripping conditions.</description><identifier>ISSN: 0888-5885</identifier><identifier>ISSN: 1520-5045</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.4c01143</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applied Chemistry ; atomistic modeling ; carbon ; carbon capture solvents ; carbon dioxide ; CO2 capture ; density functional theory ; dissociation ; fixation ; flue gas ; heat stability ; heterolytic cleavage ; homolytic cleavage ; molecular dynamics ; nitrogen ; nitrogen oxides ; solvents ; species ; water-lean solvents</subject><ispartof>Industrial & engineering chemistry research, 2024-07, Vol.63 (28), p.12316-12324</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a223t-2f01072b009e84faeb56c09796243695d7616e07bffaa88d23cbe0df8e732df03</cites><orcidid>0000-0002-5529-526X ; 0000-0002-0796-6508 ; 0000-0001-7530-2378 ; 0000-0001-6028-7021 ; 0000-0002-1101-3160 ; 0000-0003-1997-0368 ; 0000-0003-1947-0478 ; 0000000207966508 ; 0000000211013160 ; 0000000160287021 ; 0000000319970368 ; 000000025529526X ; 0000000175302378 ; 0000000329960593 ; 0000000319470478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.4c01143$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.4c01143$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2480710$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kollias, Loukas</creatorcontrib><creatorcontrib>Nguyen, Manh-Thuong</creatorcontrib><creatorcontrib>Allec, Sarah I.</creatorcontrib><creatorcontrib>Malhotra, Deepika</creatorcontrib><creatorcontrib>Zhang, Difan</creatorcontrib><creatorcontrib>Rousseau, Roger</creatorcontrib><creatorcontrib>Glezakou, Vassiliki-Alexandra</creatorcontrib><creatorcontrib>Koech, Phillip K.</creatorcontrib><creatorcontrib>Heldebrant, David J.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Molecular Understanding of Nitrogen Oxide Fixation of Water-Lean Carbon Capture Solvents by Atomistic Modeling</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Nitrogen oxides, present in flue gas, can cause negative impacts on amine carbon capture solvents by the formation of heat-stable salts and suspected carcinogens. Thus, to maximize the performance of water-lean solvents, a better understanding of this process in these systems is necessary. Here, a computational study for the fixation of the CO2 capture solvent N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (EEMPA) to nitramine/nitrosamine was conducted. The first step involves the dissociation of the NH bond of EEMPA, in which the homolytic mechanism is energetically more favorable than the heterolytic mechanism. The second step involves radical recombination to form N–N bonds. While NO2 directly reacts with EEMPA, NO has almost no effect. However, in the presence of O2, fixation of EEMPA by NO is enhanced via the formation of N2O4 species. Low reaction energies indicate that the formation of nitramine/nitrosamine may be a reversible process, suggesting that EEMPA could be recovered under thermal stripping conditions.</description><subject>Applied Chemistry</subject><subject>atomistic modeling</subject><subject>carbon</subject><subject>carbon capture solvents</subject><subject>carbon dioxide</subject><subject>CO2 capture</subject><subject>density functional theory</subject><subject>dissociation</subject><subject>fixation</subject><subject>flue gas</subject><subject>heat stability</subject><subject>heterolytic cleavage</subject><subject>homolytic cleavage</subject><subject>molecular dynamics</subject><subject>nitrogen</subject><subject>nitrogen oxides</subject><subject>solvents</subject><subject>species</subject><subject>water-lean solvents</subject><issn>0888-5885</issn><issn>1520-5045</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDFv2zAQhYmgAeKm2TMSnTpUzpEiJXoMjKYtYDdDEmQkKOro0lBIl6QC599XgrNmesP77t3dI-SawZIBZzfG5qVHm5bCAmOiPiMLJjlUEoT8RBaglKqkUvKCfM55DwBSCrEgYRsHtONgEn0KPaZcTOh92NHo6B9fUtxhoPdH3yO980dTfAyz9WwKpmqDJtC1SV2c5VDGhPQhDq8YSqbdG70t8cXn4i3dxh6HKfYLOXdmyHj1rpfk6e7H4_pXtbn_-Xt9u6kM53WpuAMGLe8AVqiEM9jJxsKqXTVc1M1K9m3DGoS2c84YpXpe2w6hdwrbmvcO6kvy9ZQbp_U6W1_Q_rUxBLRFc6GgZTP07QQdUvw3Yi56utbiMJiAccy6ZrJumkYKPqFwQm2KOSd0-pD8i0lvmoGe-9dT_3ruX7_3P418P43Mzj6OKUwPf4z_B1kZicE</recordid><startdate>20240708</startdate><enddate>20240708</enddate><creator>Kollias, Loukas</creator><creator>Nguyen, Manh-Thuong</creator><creator>Allec, Sarah I.</creator><creator>Malhotra, Deepika</creator><creator>Zhang, Difan</creator><creator>Rousseau, Roger</creator><creator>Glezakou, Vassiliki-Alexandra</creator><creator>Koech, Phillip K.</creator><creator>Heldebrant, David J.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5529-526X</orcidid><orcidid>https://orcid.org/0000-0002-0796-6508</orcidid><orcidid>https://orcid.org/0000-0001-7530-2378</orcidid><orcidid>https://orcid.org/0000-0001-6028-7021</orcidid><orcidid>https://orcid.org/0000-0002-1101-3160</orcidid><orcidid>https://orcid.org/0000-0003-1997-0368</orcidid><orcidid>https://orcid.org/0000-0003-1947-0478</orcidid><orcidid>https://orcid.org/0000000207966508</orcidid><orcidid>https://orcid.org/0000000211013160</orcidid><orcidid>https://orcid.org/0000000160287021</orcidid><orcidid>https://orcid.org/0000000319970368</orcidid><orcidid>https://orcid.org/000000025529526X</orcidid><orcidid>https://orcid.org/0000000175302378</orcidid><orcidid>https://orcid.org/0000000329960593</orcidid><orcidid>https://orcid.org/0000000319470478</orcidid></search><sort><creationdate>20240708</creationdate><title>Molecular Understanding of Nitrogen Oxide Fixation of Water-Lean Carbon Capture Solvents by Atomistic Modeling</title><author>Kollias, Loukas ; Nguyen, Manh-Thuong ; Allec, Sarah I. ; Malhotra, Deepika ; Zhang, Difan ; Rousseau, Roger ; Glezakou, Vassiliki-Alexandra ; Koech, Phillip K. ; Heldebrant, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-2f01072b009e84faeb56c09796243695d7616e07bffaa88d23cbe0df8e732df03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied Chemistry</topic><topic>atomistic modeling</topic><topic>carbon</topic><topic>carbon capture solvents</topic><topic>carbon dioxide</topic><topic>CO2 capture</topic><topic>density functional theory</topic><topic>dissociation</topic><topic>fixation</topic><topic>flue gas</topic><topic>heat stability</topic><topic>heterolytic cleavage</topic><topic>homolytic cleavage</topic><topic>molecular dynamics</topic><topic>nitrogen</topic><topic>nitrogen oxides</topic><topic>solvents</topic><topic>species</topic><topic>water-lean solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kollias, Loukas</creatorcontrib><creatorcontrib>Nguyen, Manh-Thuong</creatorcontrib><creatorcontrib>Allec, Sarah I.</creatorcontrib><creatorcontrib>Malhotra, Deepika</creatorcontrib><creatorcontrib>Zhang, Difan</creatorcontrib><creatorcontrib>Rousseau, Roger</creatorcontrib><creatorcontrib>Glezakou, Vassiliki-Alexandra</creatorcontrib><creatorcontrib>Koech, Phillip K.</creatorcontrib><creatorcontrib>Heldebrant, David J.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kollias, Loukas</au><au>Nguyen, Manh-Thuong</au><au>Allec, Sarah I.</au><au>Malhotra, Deepika</au><au>Zhang, Difan</au><au>Rousseau, Roger</au><au>Glezakou, Vassiliki-Alexandra</au><au>Koech, Phillip K.</au><au>Heldebrant, David J.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Understanding of Nitrogen Oxide Fixation of Water-Lean Carbon Capture Solvents by Atomistic Modeling</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2024-07-08</date><risdate>2024</risdate><volume>63</volume><issue>28</issue><spage>12316</spage><epage>12324</epage><pages>12316-12324</pages><issn>0888-5885</issn><issn>1520-5045</issn><eissn>1520-5045</eissn><abstract>Nitrogen oxides, present in flue gas, can cause negative impacts on amine carbon capture solvents by the formation of heat-stable salts and suspected carcinogens. Thus, to maximize the performance of water-lean solvents, a better understanding of this process in these systems is necessary. Here, a computational study for the fixation of the CO2 capture solvent N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (EEMPA) to nitramine/nitrosamine was conducted. The first step involves the dissociation of the NH bond of EEMPA, in which the homolytic mechanism is energetically more favorable than the heterolytic mechanism. The second step involves radical recombination to form N–N bonds. While NO2 directly reacts with EEMPA, NO has almost no effect. However, in the presence of O2, fixation of EEMPA by NO is enhanced via the formation of N2O4 species. Low reaction energies indicate that the formation of nitramine/nitrosamine may be a reversible process, suggesting that EEMPA could be recovered under thermal stripping conditions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.4c01143</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5529-526X</orcidid><orcidid>https://orcid.org/0000-0002-0796-6508</orcidid><orcidid>https://orcid.org/0000-0001-7530-2378</orcidid><orcidid>https://orcid.org/0000-0001-6028-7021</orcidid><orcidid>https://orcid.org/0000-0002-1101-3160</orcidid><orcidid>https://orcid.org/0000-0003-1997-0368</orcidid><orcidid>https://orcid.org/0000-0003-1947-0478</orcidid><orcidid>https://orcid.org/0000000207966508</orcidid><orcidid>https://orcid.org/0000000211013160</orcidid><orcidid>https://orcid.org/0000000160287021</orcidid><orcidid>https://orcid.org/0000000319970368</orcidid><orcidid>https://orcid.org/000000025529526X</orcidid><orcidid>https://orcid.org/0000000175302378</orcidid><orcidid>https://orcid.org/0000000329960593</orcidid><orcidid>https://orcid.org/0000000319470478</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2024-07, Vol.63 (28), p.12316-12324 |
issn | 0888-5885 1520-5045 1520-5045 |
language | eng |
recordid | cdi_osti_scitechconnect_2480710 |
source | American Chemical Society Journals |
subjects | Applied Chemistry atomistic modeling carbon carbon capture solvents carbon dioxide CO2 capture density functional theory dissociation fixation flue gas heat stability heterolytic cleavage homolytic cleavage molecular dynamics nitrogen nitrogen oxides solvents species water-lean solvents |
title | Molecular Understanding of Nitrogen Oxide Fixation of Water-Lean Carbon Capture Solvents by Atomistic Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Understanding%20of%20Nitrogen%20Oxide%20Fixation%20of%20Water-Lean%20Carbon%20Capture%20Solvents%20by%20Atomistic%20Modeling&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kollias,%20Loukas&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-07-08&rft.volume=63&rft.issue=28&rft.spage=12316&rft.epage=12324&rft.pages=12316-12324&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.4c01143&rft_dat=%3Cproquest_osti_%3E3153666542%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153666542&rft_id=info:pmid/&rfr_iscdi=true |