Quantifying scalar field dynamics with DESI 2024 Y1 BAO measurements

Quintessence scalar fields are a natural candidate for evolving dark energy. Unlike the phenomenological w0⁢wa parameterization of the dark energy equation of state, they cannot accommodate the phantom regime of dark energy w⁡(z) 0.3. The tension under Λ ⁢CDM remains noticeable (nσ < 2.8), when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2024-11, Vol.110 (10), Article 103524
Hauptverfasser: Berghaus, Kim V., Kable, Joshua A., Miranda, Vivian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physical review. D
container_volume 110
creator Berghaus, Kim V.
Kable, Joshua A.
Miranda, Vivian
description Quintessence scalar fields are a natural candidate for evolving dark energy. Unlike the phenomenological w0⁢wa parameterization of the dark energy equation of state, they cannot accommodate the phantom regime of dark energy w⁡(z) 0.3. The tension under Λ ⁢CDM remains noticeable (nσ < 2.8), when replacing two of the DESI BAO redshift bins with effective redshifts zeff = 0.51, and zeff = 0.706 with comparable BOSS DR 12 BAO measurements at zeff = 0.51, and zeff = 0.61. Furthermore, canonical scalar fields as dark energy are successful in mitigating that tension.
doi_str_mv 10.1103/PhysRevD.110.103524
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2479606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_110_103524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c201t-be5f0c4106a2c15deea3647b6a695768a87aaef008187d10b5cd213c4fbdf6763</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpE3CxuKfsOomdHEtToFKl8nvgZDmOTY2SFMUuKG9PogKnmVmNVpqPkEuEOSLE1w-73j-Zr2JM8-GQsuSETFgiIAJg-em_RzgnM-8_YLAccoE4IcXjQbXB2d6179RrVauOWmfqilZ9qxqnPf12YUeL1fOaMmAJfUN6s9jSxih_6Exj2uAvyJlVtTezX52S19vVy_I-2mzv1svFJtIMMESlSS3oBIErpjGtjFExT0TJFc9TwTOVCaWMBcgwExVCmeqKYawTW1aWCx5PydXx794HJ712weid3ret0UEOI3MOYyk-lnS3974zVn52rlFdLxHkCEz-ARuTPAKLfwCWIF4M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantifying scalar field dynamics with DESI 2024 Y1 BAO measurements</title><source>American Physical Society Journals</source><creator>Berghaus, Kim V. ; Kable, Joshua A. ; Miranda, Vivian</creator><creatorcontrib>Berghaus, Kim V. ; Kable, Joshua A. ; Miranda, Vivian ; California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>Quintessence scalar fields are a natural candidate for evolving dark energy. Unlike the phenomenological w0⁢wa parameterization of the dark energy equation of state, they cannot accommodate the phantom regime of dark energy w⁡(z) &lt;–1, or crossings into the phantom regime. Recent baryon acoustic oscillation (BAO) measurements by the Dark Energy Spectroscopic Instrument (DESI) indicate a preference for evolving dark energy over a cosmological constant, ranging from 2.6⁢σ –3.9⁢σ when fitting to w0⁢wa, and combining the DESI BAO measurements with other cosmological probes. In this work, we directly fit three simple scalar field models to the DESI BAO data, combined with cosmic microwave background anisotropy measurements and supernova datasets. We find the best fit model to include a 2–4% kinetic scalar field energy Ωscf,k, for a canonical scalar field with a quadratic or linear potential. However, only the DESY-Y5 supernova dataset combination shows a preference for quintessence over Λ cold dark matter (CDM) at the 95% confidence level. Fitting to the supernova datasets Pantheon, Pantheon+, DES-Y5, and Union3, we show that the mild tension (nσ &lt; 3.4) under Λ ⁢CDM emerges from a BAO preference for smaller values of fractional mass-energy density Ωm &lt; 0.29, while all supernova datasets, except for Pantheon, prefer larger values, Ωm &gt; 0.3. The tension under Λ ⁢CDM remains noticeable (nσ &lt; 2.8), when replacing two of the DESI BAO redshift bins with effective redshifts zeff = 0.51, and zeff = 0.706 with comparable BOSS DR 12 BAO measurements at zeff = 0.51, and zeff = 0.61. Furthermore, canonical scalar fields as dark energy are successful in mitigating that tension.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.110.103524</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Cosmological parameters ; Dark energy ; Evolution of the Universe ; Hypothetical scalars</subject><ispartof>Physical review. D, 2024-11, Vol.110 (10), Article 103524</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c201t-be5f0c4106a2c15deea3647b6a695768a87aaef008187d10b5cd213c4fbdf6763</cites><orcidid>0000-0003-2294-8188 ; 0000-0002-0516-6216 ; 0000-0003-4776-0333 ; 0000000205166216 ; 0000000347760333 ; 0000000322948188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2479606$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Berghaus, Kim V.</creatorcontrib><creatorcontrib>Kable, Joshua A.</creatorcontrib><creatorcontrib>Miranda, Vivian</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>Quantifying scalar field dynamics with DESI 2024 Y1 BAO measurements</title><title>Physical review. D</title><description>Quintessence scalar fields are a natural candidate for evolving dark energy. Unlike the phenomenological w0⁢wa parameterization of the dark energy equation of state, they cannot accommodate the phantom regime of dark energy w⁡(z) &lt;–1, or crossings into the phantom regime. Recent baryon acoustic oscillation (BAO) measurements by the Dark Energy Spectroscopic Instrument (DESI) indicate a preference for evolving dark energy over a cosmological constant, ranging from 2.6⁢σ –3.9⁢σ when fitting to w0⁢wa, and combining the DESI BAO measurements with other cosmological probes. In this work, we directly fit three simple scalar field models to the DESI BAO data, combined with cosmic microwave background anisotropy measurements and supernova datasets. We find the best fit model to include a 2–4% kinetic scalar field energy Ωscf,k, for a canonical scalar field with a quadratic or linear potential. However, only the DESY-Y5 supernova dataset combination shows a preference for quintessence over Λ cold dark matter (CDM) at the 95% confidence level. Fitting to the supernova datasets Pantheon, Pantheon+, DES-Y5, and Union3, we show that the mild tension (nσ &lt; 3.4) under Λ ⁢CDM emerges from a BAO preference for smaller values of fractional mass-energy density Ωm &lt; 0.29, while all supernova datasets, except for Pantheon, prefer larger values, Ωm &gt; 0.3. The tension under Λ ⁢CDM remains noticeable (nσ &lt; 2.8), when replacing two of the DESI BAO redshift bins with effective redshifts zeff = 0.51, and zeff = 0.706 with comparable BOSS DR 12 BAO measurements at zeff = 0.51, and zeff = 0.61. Furthermore, canonical scalar fields as dark energy are successful in mitigating that tension.</description><subject>Cosmological parameters</subject><subject>Dark energy</subject><subject>Evolution of the Universe</subject><subject>Hypothetical scalars</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EElXpE3CxuKfsOomdHEtToFKl8nvgZDmOTY2SFMUuKG9PogKnmVmNVpqPkEuEOSLE1w-73j-Zr2JM8-GQsuSETFgiIAJg-em_RzgnM-8_YLAccoE4IcXjQbXB2d6179RrVauOWmfqilZ9qxqnPf12YUeL1fOaMmAJfUN6s9jSxih_6Exj2uAvyJlVtTezX52S19vVy_I-2mzv1svFJtIMMESlSS3oBIErpjGtjFExT0TJFc9TwTOVCaWMBcgwExVCmeqKYawTW1aWCx5PydXx794HJ712weid3ret0UEOI3MOYyk-lnS3974zVn52rlFdLxHkCEz-ARuTPAKLfwCWIF4M</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Berghaus, Kim V.</creator><creator>Kable, Joshua A.</creator><creator>Miranda, Vivian</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2294-8188</orcidid><orcidid>https://orcid.org/0000-0002-0516-6216</orcidid><orcidid>https://orcid.org/0000-0003-4776-0333</orcidid><orcidid>https://orcid.org/0000000205166216</orcidid><orcidid>https://orcid.org/0000000347760333</orcidid><orcidid>https://orcid.org/0000000322948188</orcidid></search><sort><creationdate>20241115</creationdate><title>Quantifying scalar field dynamics with DESI 2024 Y1 BAO measurements</title><author>Berghaus, Kim V. ; Kable, Joshua A. ; Miranda, Vivian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c201t-be5f0c4106a2c15deea3647b6a695768a87aaef008187d10b5cd213c4fbdf6763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cosmological parameters</topic><topic>Dark energy</topic><topic>Evolution of the Universe</topic><topic>Hypothetical scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berghaus, Kim V.</creatorcontrib><creatorcontrib>Kable, Joshua A.</creatorcontrib><creatorcontrib>Miranda, Vivian</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berghaus, Kim V.</au><au>Kable, Joshua A.</au><au>Miranda, Vivian</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying scalar field dynamics with DESI 2024 Y1 BAO measurements</atitle><jtitle>Physical review. D</jtitle><date>2024-11-15</date><risdate>2024</risdate><volume>110</volume><issue>10</issue><artnum>103524</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Quintessence scalar fields are a natural candidate for evolving dark energy. Unlike the phenomenological w0⁢wa parameterization of the dark energy equation of state, they cannot accommodate the phantom regime of dark energy w⁡(z) &lt;–1, or crossings into the phantom regime. Recent baryon acoustic oscillation (BAO) measurements by the Dark Energy Spectroscopic Instrument (DESI) indicate a preference for evolving dark energy over a cosmological constant, ranging from 2.6⁢σ –3.9⁢σ when fitting to w0⁢wa, and combining the DESI BAO measurements with other cosmological probes. In this work, we directly fit three simple scalar field models to the DESI BAO data, combined with cosmic microwave background anisotropy measurements and supernova datasets. We find the best fit model to include a 2–4% kinetic scalar field energy Ωscf,k, for a canonical scalar field with a quadratic or linear potential. However, only the DESY-Y5 supernova dataset combination shows a preference for quintessence over Λ cold dark matter (CDM) at the 95% confidence level. Fitting to the supernova datasets Pantheon, Pantheon+, DES-Y5, and Union3, we show that the mild tension (nσ &lt; 3.4) under Λ ⁢CDM emerges from a BAO preference for smaller values of fractional mass-energy density Ωm &lt; 0.29, while all supernova datasets, except for Pantheon, prefer larger values, Ωm &gt; 0.3. The tension under Λ ⁢CDM remains noticeable (nσ &lt; 2.8), when replacing two of the DESI BAO redshift bins with effective redshifts zeff = 0.51, and zeff = 0.706 with comparable BOSS DR 12 BAO measurements at zeff = 0.51, and zeff = 0.61. Furthermore, canonical scalar fields as dark energy are successful in mitigating that tension.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevD.110.103524</doi><orcidid>https://orcid.org/0000-0003-2294-8188</orcidid><orcidid>https://orcid.org/0000-0002-0516-6216</orcidid><orcidid>https://orcid.org/0000-0003-4776-0333</orcidid><orcidid>https://orcid.org/0000000205166216</orcidid><orcidid>https://orcid.org/0000000347760333</orcidid><orcidid>https://orcid.org/0000000322948188</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2024-11, Vol.110 (10), Article 103524
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_2479606
source American Physical Society Journals
subjects Cosmological parameters
Dark energy
Evolution of the Universe
Hypothetical scalars
title Quantifying scalar field dynamics with DESI 2024 Y1 BAO measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20scalar%20field%20dynamics%20with%20DESI%202024%20Y1%20BAO%20measurements&rft.jtitle=Physical%20review.%20D&rft.au=Berghaus,%20Kim%20V.&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2024-11-15&rft.volume=110&rft.issue=10&rft.artnum=103524&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.110.103524&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevD_110_103524%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true