Quantifying scalar field dynamics with DESI 2024 Y1 BAO measurements
Quintessence scalar fields are a natural candidate for evolving dark energy. Unlike the phenomenological w0wa parameterization of the dark energy equation of state, they cannot accommodate the phantom regime of dark energy w(z) 0.3. The tension under Λ CDM remains noticeable (nσ < 2.8), when...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2024-11, Vol.110 (10), Article 103524 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physical review. D |
container_volume | 110 |
creator | Berghaus, Kim V. Kable, Joshua A. Miranda, Vivian |
description | Quintessence scalar fields are a natural candidate for evolving dark energy. Unlike the phenomenological w0wa parameterization of the dark energy equation of state, they cannot accommodate the phantom regime of dark energy w(z) 0.3. The tension under Λ CDM remains noticeable (nσ < 2.8), when replacing two of the DESI BAO redshift bins with effective redshifts zeff = 0.51, and zeff = 0.706 with comparable BOSS DR 12 BAO measurements at zeff = 0.51, and zeff = 0.61. Furthermore, canonical scalar fields as dark energy are successful in mitigating that tension. |
doi_str_mv | 10.1103/PhysRevD.110.103524 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2479606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_110_103524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c201t-be5f0c4106a2c15deea3647b6a695768a87aaef008187d10b5cd213c4fbdf6763</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpE3CxuKfsOomdHEtToFKl8nvgZDmOTY2SFMUuKG9PogKnmVmNVpqPkEuEOSLE1w-73j-Zr2JM8-GQsuSETFgiIAJg-em_RzgnM-8_YLAccoE4IcXjQbXB2d6179RrVauOWmfqilZ9qxqnPf12YUeL1fOaMmAJfUN6s9jSxih_6Exj2uAvyJlVtTezX52S19vVy_I-2mzv1svFJtIMMESlSS3oBIErpjGtjFExT0TJFc9TwTOVCaWMBcgwExVCmeqKYawTW1aWCx5PydXx794HJ712weid3ret0UEOI3MOYyk-lnS3974zVn52rlFdLxHkCEz-ARuTPAKLfwCWIF4M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantifying scalar field dynamics with DESI 2024 Y1 BAO measurements</title><source>American Physical Society Journals</source><creator>Berghaus, Kim V. ; Kable, Joshua A. ; Miranda, Vivian</creator><creatorcontrib>Berghaus, Kim V. ; Kable, Joshua A. ; Miranda, Vivian ; California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>Quintessence scalar fields are a natural candidate for evolving dark energy. Unlike the phenomenological w0wa parameterization of the dark energy equation of state, they cannot accommodate the phantom regime of dark energy w(z) <–1, or crossings into the phantom regime. Recent baryon acoustic oscillation (BAO) measurements by the Dark Energy Spectroscopic Instrument (DESI) indicate a preference for evolving dark energy over a cosmological constant, ranging from 2.6σ –3.9σ when fitting to w0wa, and combining the DESI BAO measurements with other cosmological probes. In this work, we directly fit three simple scalar field models to the DESI BAO data, combined with cosmic microwave background anisotropy measurements and supernova datasets. We find the best fit model to include a 2–4% kinetic scalar field energy Ωscf,k, for a canonical scalar field with a quadratic or linear potential. However, only the DESY-Y5 supernova dataset combination shows a preference for quintessence over Λ cold dark matter (CDM) at the 95% confidence level. Fitting to the supernova datasets Pantheon, Pantheon+, DES-Y5, and Union3, we show that the mild tension (nσ < 3.4) under Λ CDM emerges from a BAO preference for smaller values of fractional mass-energy density Ωm < 0.29, while all supernova datasets, except for Pantheon, prefer larger values, Ωm > 0.3. The tension under Λ CDM remains noticeable (nσ < 2.8), when replacing two of the DESI BAO redshift bins with effective redshifts zeff = 0.51, and zeff = 0.706 with comparable BOSS DR 12 BAO measurements at zeff = 0.51, and zeff = 0.61. Furthermore, canonical scalar fields as dark energy are successful in mitigating that tension.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.110.103524</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Cosmological parameters ; Dark energy ; Evolution of the Universe ; Hypothetical scalars</subject><ispartof>Physical review. D, 2024-11, Vol.110 (10), Article 103524</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c201t-be5f0c4106a2c15deea3647b6a695768a87aaef008187d10b5cd213c4fbdf6763</cites><orcidid>0000-0003-2294-8188 ; 0000-0002-0516-6216 ; 0000-0003-4776-0333 ; 0000000205166216 ; 0000000347760333 ; 0000000322948188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2479606$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Berghaus, Kim V.</creatorcontrib><creatorcontrib>Kable, Joshua A.</creatorcontrib><creatorcontrib>Miranda, Vivian</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>Quantifying scalar field dynamics with DESI 2024 Y1 BAO measurements</title><title>Physical review. D</title><description>Quintessence scalar fields are a natural candidate for evolving dark energy. Unlike the phenomenological w0wa parameterization of the dark energy equation of state, they cannot accommodate the phantom regime of dark energy w(z) <–1, or crossings into the phantom regime. Recent baryon acoustic oscillation (BAO) measurements by the Dark Energy Spectroscopic Instrument (DESI) indicate a preference for evolving dark energy over a cosmological constant, ranging from 2.6σ –3.9σ when fitting to w0wa, and combining the DESI BAO measurements with other cosmological probes. In this work, we directly fit three simple scalar field models to the DESI BAO data, combined with cosmic microwave background anisotropy measurements and supernova datasets. We find the best fit model to include a 2–4% kinetic scalar field energy Ωscf,k, for a canonical scalar field with a quadratic or linear potential. However, only the DESY-Y5 supernova dataset combination shows a preference for quintessence over Λ cold dark matter (CDM) at the 95% confidence level. Fitting to the supernova datasets Pantheon, Pantheon+, DES-Y5, and Union3, we show that the mild tension (nσ < 3.4) under Λ CDM emerges from a BAO preference for smaller values of fractional mass-energy density Ωm < 0.29, while all supernova datasets, except for Pantheon, prefer larger values, Ωm > 0.3. The tension under Λ CDM remains noticeable (nσ < 2.8), when replacing two of the DESI BAO redshift bins with effective redshifts zeff = 0.51, and zeff = 0.706 with comparable BOSS DR 12 BAO measurements at zeff = 0.51, and zeff = 0.61. Furthermore, canonical scalar fields as dark energy are successful in mitigating that tension.</description><subject>Cosmological parameters</subject><subject>Dark energy</subject><subject>Evolution of the Universe</subject><subject>Hypothetical scalars</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EElXpE3CxuKfsOomdHEtToFKl8nvgZDmOTY2SFMUuKG9PogKnmVmNVpqPkEuEOSLE1w-73j-Zr2JM8-GQsuSETFgiIAJg-em_RzgnM-8_YLAccoE4IcXjQbXB2d6179RrVauOWmfqilZ9qxqnPf12YUeL1fOaMmAJfUN6s9jSxih_6Exj2uAvyJlVtTezX52S19vVy_I-2mzv1svFJtIMMESlSS3oBIErpjGtjFExT0TJFc9TwTOVCaWMBcgwExVCmeqKYawTW1aWCx5PydXx794HJ712weid3ret0UEOI3MOYyk-lnS3974zVn52rlFdLxHkCEz-ARuTPAKLfwCWIF4M</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Berghaus, Kim V.</creator><creator>Kable, Joshua A.</creator><creator>Miranda, Vivian</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2294-8188</orcidid><orcidid>https://orcid.org/0000-0002-0516-6216</orcidid><orcidid>https://orcid.org/0000-0003-4776-0333</orcidid><orcidid>https://orcid.org/0000000205166216</orcidid><orcidid>https://orcid.org/0000000347760333</orcidid><orcidid>https://orcid.org/0000000322948188</orcidid></search><sort><creationdate>20241115</creationdate><title>Quantifying scalar field dynamics with DESI 2024 Y1 BAO measurements</title><author>Berghaus, Kim V. ; Kable, Joshua A. ; Miranda, Vivian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c201t-be5f0c4106a2c15deea3647b6a695768a87aaef008187d10b5cd213c4fbdf6763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cosmological parameters</topic><topic>Dark energy</topic><topic>Evolution of the Universe</topic><topic>Hypothetical scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berghaus, Kim V.</creatorcontrib><creatorcontrib>Kable, Joshua A.</creatorcontrib><creatorcontrib>Miranda, Vivian</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berghaus, Kim V.</au><au>Kable, Joshua A.</au><au>Miranda, Vivian</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying scalar field dynamics with DESI 2024 Y1 BAO measurements</atitle><jtitle>Physical review. D</jtitle><date>2024-11-15</date><risdate>2024</risdate><volume>110</volume><issue>10</issue><artnum>103524</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Quintessence scalar fields are a natural candidate for evolving dark energy. Unlike the phenomenological w0wa parameterization of the dark energy equation of state, they cannot accommodate the phantom regime of dark energy w(z) <–1, or crossings into the phantom regime. Recent baryon acoustic oscillation (BAO) measurements by the Dark Energy Spectroscopic Instrument (DESI) indicate a preference for evolving dark energy over a cosmological constant, ranging from 2.6σ –3.9σ when fitting to w0wa, and combining the DESI BAO measurements with other cosmological probes. In this work, we directly fit three simple scalar field models to the DESI BAO data, combined with cosmic microwave background anisotropy measurements and supernova datasets. We find the best fit model to include a 2–4% kinetic scalar field energy Ωscf,k, for a canonical scalar field with a quadratic or linear potential. However, only the DESY-Y5 supernova dataset combination shows a preference for quintessence over Λ cold dark matter (CDM) at the 95% confidence level. Fitting to the supernova datasets Pantheon, Pantheon+, DES-Y5, and Union3, we show that the mild tension (nσ < 3.4) under Λ CDM emerges from a BAO preference for smaller values of fractional mass-energy density Ωm < 0.29, while all supernova datasets, except for Pantheon, prefer larger values, Ωm > 0.3. The tension under Λ CDM remains noticeable (nσ < 2.8), when replacing two of the DESI BAO redshift bins with effective redshifts zeff = 0.51, and zeff = 0.706 with comparable BOSS DR 12 BAO measurements at zeff = 0.51, and zeff = 0.61. Furthermore, canonical scalar fields as dark energy are successful in mitigating that tension.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevD.110.103524</doi><orcidid>https://orcid.org/0000-0003-2294-8188</orcidid><orcidid>https://orcid.org/0000-0002-0516-6216</orcidid><orcidid>https://orcid.org/0000-0003-4776-0333</orcidid><orcidid>https://orcid.org/0000000205166216</orcidid><orcidid>https://orcid.org/0000000347760333</orcidid><orcidid>https://orcid.org/0000000322948188</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2024-11, Vol.110 (10), Article 103524 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_osti_scitechconnect_2479606 |
source | American Physical Society Journals |
subjects | Cosmological parameters Dark energy Evolution of the Universe Hypothetical scalars |
title | Quantifying scalar field dynamics with DESI 2024 Y1 BAO measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20scalar%20field%20dynamics%20with%20DESI%202024%20Y1%20BAO%20measurements&rft.jtitle=Physical%20review.%20D&rft.au=Berghaus,%20Kim%20V.&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2024-11-15&rft.volume=110&rft.issue=10&rft.artnum=103524&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.110.103524&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevD_110_103524%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |