Glaciation of liquid clouds, snowfall, and reduced cloud cover at industrial aerosol hot spots
The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between -10° and -24°C. Compared with the nearby liquid-wa...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2024-11, Vol.386 (6723), p.756-762 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 762 |
---|---|
container_issue | 6723 |
container_start_page | 756 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 386 |
creator | Toll, Velle Rahu, Jorma Keernik, Hannes Trofimov, Heido Voormansik, Tanel Manshausen, Peter Hung, Emma Michelson, Daniel Christensen, Matthew W Post, Piia Junninen, Heikki Murray, Benjamin J Lohmann, Ulrike Watson-Parris, Duncan Stier, Philip Donaldson, Norman Storelvmo, Trude Kulmala, Markku Bellouin, Nicolas |
description | The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between -10° and -24°C. Compared with the nearby liquid-water clouds, shortwave reflectance was reduced by 14% and longwave radiance was increased by 4% in the glaciation-affected regions. There was an 8% reduction in cloud cover and an 18% reduction in cloud optical thickness. Additionally, daily glaciation-induced snowfall accumulations reached 15 millimeters. Glaciation events downwind of industrial aerosol hot spots indicate that anthropogenic aerosols likely serve as ice-nucleating particles. However, rare glaciation events downwind of nuclear power plants indicate that factors other than aerosol emissions may also play a role in the observed glaciation events. |
doi_str_mv | 10.1126/science.adl0303 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2478847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128825552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-5236de61000ac6d59576dcf6691af4607291f9f22d422cb3906c1fd75c07cc503</originalsourceid><addsrcrecordid>eNpdkb1PHDEQxa0oKByX1OmQFRoKFvyx9q7LCAGJdBINaWOZsVcY-ezD9oLy38fkFoo0M8X8ZvTePIS-UnJOKZMXBbyL4M6NDYQT_gGtKFGiU4zwj2hFCJfdSAZxiI5KeSSkzRT_hA65Ej3tBV2h3zfBgDfVp4jThIN_mr3FENJsyxkuMb1MJoQzbKLF2dkZ3DLFkJ5dxqZiH-1cavYmYONyKingh1Rx2aVaPqODtl_cl6Wv0a_rq7vLH93m9ubn5fdNB4zL2olWrZO0KTQgrVBikBYmKRU1Uy_JwBSd1MSY7RmDe66IBDrZQQAZAATha_RtfzeV6nX7SnXwAClGB1WzfhjHfmjQ6R7a5fQ0u1L11hdwIZjo0lw0p2wcmRBNzRqd_Ic-pjnHZuEf1eQQJhp1saeg2S7ZTXqX_dbkP5oS_ZqPXvLRSz5t43i5O99vnX3n3wLhfwEoLYyN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128291025</pqid></control><display><type>article</type><title>Glaciation of liquid clouds, snowfall, and reduced cloud cover at industrial aerosol hot spots</title><source>Science Magazine</source><creator>Toll, Velle ; Rahu, Jorma ; Keernik, Hannes ; Trofimov, Heido ; Voormansik, Tanel ; Manshausen, Peter ; Hung, Emma ; Michelson, Daniel ; Christensen, Matthew W ; Post, Piia ; Junninen, Heikki ; Murray, Benjamin J ; Lohmann, Ulrike ; Watson-Parris, Duncan ; Stier, Philip ; Donaldson, Norman ; Storelvmo, Trude ; Kulmala, Markku ; Bellouin, Nicolas</creator><creatorcontrib>Toll, Velle ; Rahu, Jorma ; Keernik, Hannes ; Trofimov, Heido ; Voormansik, Tanel ; Manshausen, Peter ; Hung, Emma ; Michelson, Daniel ; Christensen, Matthew W ; Post, Piia ; Junninen, Heikki ; Murray, Benjamin J ; Lohmann, Ulrike ; Watson-Parris, Duncan ; Stier, Philip ; Donaldson, Norman ; Storelvmo, Trude ; Kulmala, Markku ; Bellouin, Nicolas ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between -10° and -24°C. Compared with the nearby liquid-water clouds, shortwave reflectance was reduced by 14% and longwave radiance was increased by 4% in the glaciation-affected regions. There was an 8% reduction in cloud cover and an 18% reduction in cloud optical thickness. Additionally, daily glaciation-induced snowfall accumulations reached 15 millimeters. Glaciation events downwind of industrial aerosol hot spots indicate that anthropogenic aerosols likely serve as ice-nucleating particles. However, rare glaciation events downwind of nuclear power plants indicate that factors other than aerosol emissions may also play a role in the observed glaciation events.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.adl0303</identifier><identifier>PMID: 39541451</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Air pollution ; Anthropogenic factors ; Cloud cover ; Coal-fired power plants ; Glaciation ; Glaciology ; Human influences ; Ice cover ; Ice formation ; Industrial pollution ; Oil refineries ; Optical properties ; Optical thickness ; Power plants ; Refineries ; Snowfall ; Solar radiation ; Water drops</subject><ispartof>Science (American Association for the Advancement of Science), 2024-11, Vol.386 (6723), p.756-762</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-5236de61000ac6d59576dcf6691af4607291f9f22d422cb3906c1fd75c07cc503</cites><orcidid>0009-0003-5535-0761 ; 0000-0003-0834-4564 ; 0000-0002-4273-6644 ; 0000-0001-8885-3785 ; 0000-0003-3877-8101 ; 0000-0001-7178-9430 ; 0000-0002-8198-8131 ; 0000-0003-3464-7825 ; 0000-0002-5312-4950 ; 0000-0002-1191-0128 ; 0000-0002-3537-3005 ; 0000-0003-2109-9559 ; 0000-0002-0068-2430 ; 0000-0002-8760-7803 ; 0000-0003-3222-9881 ; 0000-0002-3954-9995 ; 0000-0002-1603-7049 ; 0009-0005-5086-3693 ; 0000000239549995 ; 0000000211910128 ; 0009000550863693 ; 0000000200682430 ; 0000000321099559 ; 0000000281988131 ; 0000000253124950 ; 0000000308344564 ; 0000000332229881 ; 0000000338778101 ; 0000000216037049 ; 0000000242736644 ; 0000000287607803 ; 0000000171789430 ; 0000000334647825 ; 0009000355350761 ; 0000000235373005 ; 0000000188853785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39541451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2478847$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Toll, Velle</creatorcontrib><creatorcontrib>Rahu, Jorma</creatorcontrib><creatorcontrib>Keernik, Hannes</creatorcontrib><creatorcontrib>Trofimov, Heido</creatorcontrib><creatorcontrib>Voormansik, Tanel</creatorcontrib><creatorcontrib>Manshausen, Peter</creatorcontrib><creatorcontrib>Hung, Emma</creatorcontrib><creatorcontrib>Michelson, Daniel</creatorcontrib><creatorcontrib>Christensen, Matthew W</creatorcontrib><creatorcontrib>Post, Piia</creatorcontrib><creatorcontrib>Junninen, Heikki</creatorcontrib><creatorcontrib>Murray, Benjamin J</creatorcontrib><creatorcontrib>Lohmann, Ulrike</creatorcontrib><creatorcontrib>Watson-Parris, Duncan</creatorcontrib><creatorcontrib>Stier, Philip</creatorcontrib><creatorcontrib>Donaldson, Norman</creatorcontrib><creatorcontrib>Storelvmo, Trude</creatorcontrib><creatorcontrib>Kulmala, Markku</creatorcontrib><creatorcontrib>Bellouin, Nicolas</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Glaciation of liquid clouds, snowfall, and reduced cloud cover at industrial aerosol hot spots</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between -10° and -24°C. Compared with the nearby liquid-water clouds, shortwave reflectance was reduced by 14% and longwave radiance was increased by 4% in the glaciation-affected regions. There was an 8% reduction in cloud cover and an 18% reduction in cloud optical thickness. Additionally, daily glaciation-induced snowfall accumulations reached 15 millimeters. Glaciation events downwind of industrial aerosol hot spots indicate that anthropogenic aerosols likely serve as ice-nucleating particles. However, rare glaciation events downwind of nuclear power plants indicate that factors other than aerosol emissions may also play a role in the observed glaciation events.</description><subject>Air pollution</subject><subject>Anthropogenic factors</subject><subject>Cloud cover</subject><subject>Coal-fired power plants</subject><subject>Glaciation</subject><subject>Glaciology</subject><subject>Human influences</subject><subject>Ice cover</subject><subject>Ice formation</subject><subject>Industrial pollution</subject><subject>Oil refineries</subject><subject>Optical properties</subject><subject>Optical thickness</subject><subject>Power plants</subject><subject>Refineries</subject><subject>Snowfall</subject><subject>Solar radiation</subject><subject>Water drops</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkb1PHDEQxa0oKByX1OmQFRoKFvyx9q7LCAGJdBINaWOZsVcY-ezD9oLy38fkFoo0M8X8ZvTePIS-UnJOKZMXBbyL4M6NDYQT_gGtKFGiU4zwj2hFCJfdSAZxiI5KeSSkzRT_hA65Ej3tBV2h3zfBgDfVp4jThIN_mr3FENJsyxkuMb1MJoQzbKLF2dkZ3DLFkJ5dxqZiH-1cavYmYONyKingh1Rx2aVaPqODtl_cl6Wv0a_rq7vLH93m9ubn5fdNB4zL2olWrZO0KTQgrVBikBYmKRU1Uy_JwBSd1MSY7RmDe66IBDrZQQAZAATha_RtfzeV6nX7SnXwAClGB1WzfhjHfmjQ6R7a5fQ0u1L11hdwIZjo0lw0p2wcmRBNzRqd_Ic-pjnHZuEf1eQQJhp1saeg2S7ZTXqX_dbkP5oS_ZqPXvLRSz5t43i5O99vnX3n3wLhfwEoLYyN</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Toll, Velle</creator><creator>Rahu, Jorma</creator><creator>Keernik, Hannes</creator><creator>Trofimov, Heido</creator><creator>Voormansik, Tanel</creator><creator>Manshausen, Peter</creator><creator>Hung, Emma</creator><creator>Michelson, Daniel</creator><creator>Christensen, Matthew W</creator><creator>Post, Piia</creator><creator>Junninen, Heikki</creator><creator>Murray, Benjamin J</creator><creator>Lohmann, Ulrike</creator><creator>Watson-Parris, Duncan</creator><creator>Stier, Philip</creator><creator>Donaldson, Norman</creator><creator>Storelvmo, Trude</creator><creator>Kulmala, Markku</creator><creator>Bellouin, Nicolas</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0009-0003-5535-0761</orcidid><orcidid>https://orcid.org/0000-0003-0834-4564</orcidid><orcidid>https://orcid.org/0000-0002-4273-6644</orcidid><orcidid>https://orcid.org/0000-0001-8885-3785</orcidid><orcidid>https://orcid.org/0000-0003-3877-8101</orcidid><orcidid>https://orcid.org/0000-0001-7178-9430</orcidid><orcidid>https://orcid.org/0000-0002-8198-8131</orcidid><orcidid>https://orcid.org/0000-0003-3464-7825</orcidid><orcidid>https://orcid.org/0000-0002-5312-4950</orcidid><orcidid>https://orcid.org/0000-0002-1191-0128</orcidid><orcidid>https://orcid.org/0000-0002-3537-3005</orcidid><orcidid>https://orcid.org/0000-0003-2109-9559</orcidid><orcidid>https://orcid.org/0000-0002-0068-2430</orcidid><orcidid>https://orcid.org/0000-0002-8760-7803</orcidid><orcidid>https://orcid.org/0000-0003-3222-9881</orcidid><orcidid>https://orcid.org/0000-0002-3954-9995</orcidid><orcidid>https://orcid.org/0000-0002-1603-7049</orcidid><orcidid>https://orcid.org/0009-0005-5086-3693</orcidid><orcidid>https://orcid.org/0000000239549995</orcidid><orcidid>https://orcid.org/0000000211910128</orcidid><orcidid>https://orcid.org/0009000550863693</orcidid><orcidid>https://orcid.org/0000000200682430</orcidid><orcidid>https://orcid.org/0000000321099559</orcidid><orcidid>https://orcid.org/0000000281988131</orcidid><orcidid>https://orcid.org/0000000253124950</orcidid><orcidid>https://orcid.org/0000000308344564</orcidid><orcidid>https://orcid.org/0000000332229881</orcidid><orcidid>https://orcid.org/0000000338778101</orcidid><orcidid>https://orcid.org/0000000216037049</orcidid><orcidid>https://orcid.org/0000000242736644</orcidid><orcidid>https://orcid.org/0000000287607803</orcidid><orcidid>https://orcid.org/0000000171789430</orcidid><orcidid>https://orcid.org/0000000334647825</orcidid><orcidid>https://orcid.org/0009000355350761</orcidid><orcidid>https://orcid.org/0000000235373005</orcidid><orcidid>https://orcid.org/0000000188853785</orcidid></search><sort><creationdate>20241115</creationdate><title>Glaciation of liquid clouds, snowfall, and reduced cloud cover at industrial aerosol hot spots</title><author>Toll, Velle ; Rahu, Jorma ; Keernik, Hannes ; Trofimov, Heido ; Voormansik, Tanel ; Manshausen, Peter ; Hung, Emma ; Michelson, Daniel ; Christensen, Matthew W ; Post, Piia ; Junninen, Heikki ; Murray, Benjamin J ; Lohmann, Ulrike ; Watson-Parris, Duncan ; Stier, Philip ; Donaldson, Norman ; Storelvmo, Trude ; Kulmala, Markku ; Bellouin, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-5236de61000ac6d59576dcf6691af4607291f9f22d422cb3906c1fd75c07cc503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air pollution</topic><topic>Anthropogenic factors</topic><topic>Cloud cover</topic><topic>Coal-fired power plants</topic><topic>Glaciation</topic><topic>Glaciology</topic><topic>Human influences</topic><topic>Ice cover</topic><topic>Ice formation</topic><topic>Industrial pollution</topic><topic>Oil refineries</topic><topic>Optical properties</topic><topic>Optical thickness</topic><topic>Power plants</topic><topic>Refineries</topic><topic>Snowfall</topic><topic>Solar radiation</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toll, Velle</creatorcontrib><creatorcontrib>Rahu, Jorma</creatorcontrib><creatorcontrib>Keernik, Hannes</creatorcontrib><creatorcontrib>Trofimov, Heido</creatorcontrib><creatorcontrib>Voormansik, Tanel</creatorcontrib><creatorcontrib>Manshausen, Peter</creatorcontrib><creatorcontrib>Hung, Emma</creatorcontrib><creatorcontrib>Michelson, Daniel</creatorcontrib><creatorcontrib>Christensen, Matthew W</creatorcontrib><creatorcontrib>Post, Piia</creatorcontrib><creatorcontrib>Junninen, Heikki</creatorcontrib><creatorcontrib>Murray, Benjamin J</creatorcontrib><creatorcontrib>Lohmann, Ulrike</creatorcontrib><creatorcontrib>Watson-Parris, Duncan</creatorcontrib><creatorcontrib>Stier, Philip</creatorcontrib><creatorcontrib>Donaldson, Norman</creatorcontrib><creatorcontrib>Storelvmo, Trude</creatorcontrib><creatorcontrib>Kulmala, Markku</creatorcontrib><creatorcontrib>Bellouin, Nicolas</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toll, Velle</au><au>Rahu, Jorma</au><au>Keernik, Hannes</au><au>Trofimov, Heido</au><au>Voormansik, Tanel</au><au>Manshausen, Peter</au><au>Hung, Emma</au><au>Michelson, Daniel</au><au>Christensen, Matthew W</au><au>Post, Piia</au><au>Junninen, Heikki</au><au>Murray, Benjamin J</au><au>Lohmann, Ulrike</au><au>Watson-Parris, Duncan</au><au>Stier, Philip</au><au>Donaldson, Norman</au><au>Storelvmo, Trude</au><au>Kulmala, Markku</au><au>Bellouin, Nicolas</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glaciation of liquid clouds, snowfall, and reduced cloud cover at industrial aerosol hot spots</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2024-11-15</date><risdate>2024</risdate><volume>386</volume><issue>6723</issue><spage>756</spage><epage>762</epage><pages>756-762</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between -10° and -24°C. Compared with the nearby liquid-water clouds, shortwave reflectance was reduced by 14% and longwave radiance was increased by 4% in the glaciation-affected regions. There was an 8% reduction in cloud cover and an 18% reduction in cloud optical thickness. Additionally, daily glaciation-induced snowfall accumulations reached 15 millimeters. Glaciation events downwind of industrial aerosol hot spots indicate that anthropogenic aerosols likely serve as ice-nucleating particles. However, rare glaciation events downwind of nuclear power plants indicate that factors other than aerosol emissions may also play a role in the observed glaciation events.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>39541451</pmid><doi>10.1126/science.adl0303</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0003-5535-0761</orcidid><orcidid>https://orcid.org/0000-0003-0834-4564</orcidid><orcidid>https://orcid.org/0000-0002-4273-6644</orcidid><orcidid>https://orcid.org/0000-0001-8885-3785</orcidid><orcidid>https://orcid.org/0000-0003-3877-8101</orcidid><orcidid>https://orcid.org/0000-0001-7178-9430</orcidid><orcidid>https://orcid.org/0000-0002-8198-8131</orcidid><orcidid>https://orcid.org/0000-0003-3464-7825</orcidid><orcidid>https://orcid.org/0000-0002-5312-4950</orcidid><orcidid>https://orcid.org/0000-0002-1191-0128</orcidid><orcidid>https://orcid.org/0000-0002-3537-3005</orcidid><orcidid>https://orcid.org/0000-0003-2109-9559</orcidid><orcidid>https://orcid.org/0000-0002-0068-2430</orcidid><orcidid>https://orcid.org/0000-0002-8760-7803</orcidid><orcidid>https://orcid.org/0000-0003-3222-9881</orcidid><orcidid>https://orcid.org/0000-0002-3954-9995</orcidid><orcidid>https://orcid.org/0000-0002-1603-7049</orcidid><orcidid>https://orcid.org/0009-0005-5086-3693</orcidid><orcidid>https://orcid.org/0000000239549995</orcidid><orcidid>https://orcid.org/0000000211910128</orcidid><orcidid>https://orcid.org/0009000550863693</orcidid><orcidid>https://orcid.org/0000000200682430</orcidid><orcidid>https://orcid.org/0000000321099559</orcidid><orcidid>https://orcid.org/0000000281988131</orcidid><orcidid>https://orcid.org/0000000253124950</orcidid><orcidid>https://orcid.org/0000000308344564</orcidid><orcidid>https://orcid.org/0000000332229881</orcidid><orcidid>https://orcid.org/0000000338778101</orcidid><orcidid>https://orcid.org/0000000216037049</orcidid><orcidid>https://orcid.org/0000000242736644</orcidid><orcidid>https://orcid.org/0000000287607803</orcidid><orcidid>https://orcid.org/0000000171789430</orcidid><orcidid>https://orcid.org/0000000334647825</orcidid><orcidid>https://orcid.org/0009000355350761</orcidid><orcidid>https://orcid.org/0000000235373005</orcidid><orcidid>https://orcid.org/0000000188853785</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2024-11, Vol.386 (6723), p.756-762 |
issn | 0036-8075 1095-9203 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_2478847 |
source | Science Magazine |
subjects | Air pollution Anthropogenic factors Cloud cover Coal-fired power plants Glaciation Glaciology Human influences Ice cover Ice formation Industrial pollution Oil refineries Optical properties Optical thickness Power plants Refineries Snowfall Solar radiation Water drops |
title | Glaciation of liquid clouds, snowfall, and reduced cloud cover at industrial aerosol hot spots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glaciation%20of%20liquid%20clouds,%20snowfall,%20and%20reduced%20cloud%20cover%20at%20industrial%20aerosol%20hot%20spots&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Toll,%20Velle&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-11-15&rft.volume=386&rft.issue=6723&rft.spage=756&rft.epage=762&rft.pages=756-762&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.adl0303&rft_dat=%3Cproquest_osti_%3E3128825552%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128291025&rft_id=info:pmid/39541451&rfr_iscdi=true |