Glaciation of liquid clouds, snowfall, and reduced cloud cover at industrial aerosol hot spots

The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between -10° and -24°C. Compared with the nearby liquid-wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2024-11, Vol.386 (6723), p.756-762
Hauptverfasser: Toll, Velle, Rahu, Jorma, Keernik, Hannes, Trofimov, Heido, Voormansik, Tanel, Manshausen, Peter, Hung, Emma, Michelson, Daniel, Christensen, Matthew W, Post, Piia, Junninen, Heikki, Murray, Benjamin J, Lohmann, Ulrike, Watson-Parris, Duncan, Stier, Philip, Donaldson, Norman, Storelvmo, Trude, Kulmala, Markku, Bellouin, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 762
container_issue 6723
container_start_page 756
container_title Science (American Association for the Advancement of Science)
container_volume 386
creator Toll, Velle
Rahu, Jorma
Keernik, Hannes
Trofimov, Heido
Voormansik, Tanel
Manshausen, Peter
Hung, Emma
Michelson, Daniel
Christensen, Matthew W
Post, Piia
Junninen, Heikki
Murray, Benjamin J
Lohmann, Ulrike
Watson-Parris, Duncan
Stier, Philip
Donaldson, Norman
Storelvmo, Trude
Kulmala, Markku
Bellouin, Nicolas
description The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between -10° and -24°C. Compared with the nearby liquid-water clouds, shortwave reflectance was reduced by 14% and longwave radiance was increased by 4% in the glaciation-affected regions. There was an 8% reduction in cloud cover and an 18% reduction in cloud optical thickness. Additionally, daily glaciation-induced snowfall accumulations reached 15 millimeters. Glaciation events downwind of industrial aerosol hot spots indicate that anthropogenic aerosols likely serve as ice-nucleating particles. However, rare glaciation events downwind of nuclear power plants indicate that factors other than aerosol emissions may also play a role in the observed glaciation events.
doi_str_mv 10.1126/science.adl0303
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2478847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128825552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-5236de61000ac6d59576dcf6691af4607291f9f22d422cb3906c1fd75c07cc503</originalsourceid><addsrcrecordid>eNpdkb1PHDEQxa0oKByX1OmQFRoKFvyx9q7LCAGJdBINaWOZsVcY-ezD9oLy38fkFoo0M8X8ZvTePIS-UnJOKZMXBbyL4M6NDYQT_gGtKFGiU4zwj2hFCJfdSAZxiI5KeSSkzRT_hA65Ej3tBV2h3zfBgDfVp4jThIN_mr3FENJsyxkuMb1MJoQzbKLF2dkZ3DLFkJ5dxqZiH-1cavYmYONyKingh1Rx2aVaPqODtl_cl6Wv0a_rq7vLH93m9ubn5fdNB4zL2olWrZO0KTQgrVBikBYmKRU1Uy_JwBSd1MSY7RmDe66IBDrZQQAZAATha_RtfzeV6nX7SnXwAClGB1WzfhjHfmjQ6R7a5fQ0u1L11hdwIZjo0lw0p2wcmRBNzRqd_Ic-pjnHZuEf1eQQJhp1saeg2S7ZTXqX_dbkP5oS_ZqPXvLRSz5t43i5O99vnX3n3wLhfwEoLYyN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128291025</pqid></control><display><type>article</type><title>Glaciation of liquid clouds, snowfall, and reduced cloud cover at industrial aerosol hot spots</title><source>Science Magazine</source><creator>Toll, Velle ; Rahu, Jorma ; Keernik, Hannes ; Trofimov, Heido ; Voormansik, Tanel ; Manshausen, Peter ; Hung, Emma ; Michelson, Daniel ; Christensen, Matthew W ; Post, Piia ; Junninen, Heikki ; Murray, Benjamin J ; Lohmann, Ulrike ; Watson-Parris, Duncan ; Stier, Philip ; Donaldson, Norman ; Storelvmo, Trude ; Kulmala, Markku ; Bellouin, Nicolas</creator><creatorcontrib>Toll, Velle ; Rahu, Jorma ; Keernik, Hannes ; Trofimov, Heido ; Voormansik, Tanel ; Manshausen, Peter ; Hung, Emma ; Michelson, Daniel ; Christensen, Matthew W ; Post, Piia ; Junninen, Heikki ; Murray, Benjamin J ; Lohmann, Ulrike ; Watson-Parris, Duncan ; Stier, Philip ; Donaldson, Norman ; Storelvmo, Trude ; Kulmala, Markku ; Bellouin, Nicolas ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between -10° and -24°C. Compared with the nearby liquid-water clouds, shortwave reflectance was reduced by 14% and longwave radiance was increased by 4% in the glaciation-affected regions. There was an 8% reduction in cloud cover and an 18% reduction in cloud optical thickness. Additionally, daily glaciation-induced snowfall accumulations reached 15 millimeters. Glaciation events downwind of industrial aerosol hot spots indicate that anthropogenic aerosols likely serve as ice-nucleating particles. However, rare glaciation events downwind of nuclear power plants indicate that factors other than aerosol emissions may also play a role in the observed glaciation events.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.adl0303</identifier><identifier>PMID: 39541451</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Air pollution ; Anthropogenic factors ; Cloud cover ; Coal-fired power plants ; Glaciation ; Glaciology ; Human influences ; Ice cover ; Ice formation ; Industrial pollution ; Oil refineries ; Optical properties ; Optical thickness ; Power plants ; Refineries ; Snowfall ; Solar radiation ; Water drops</subject><ispartof>Science (American Association for the Advancement of Science), 2024-11, Vol.386 (6723), p.756-762</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-5236de61000ac6d59576dcf6691af4607291f9f22d422cb3906c1fd75c07cc503</cites><orcidid>0009-0003-5535-0761 ; 0000-0003-0834-4564 ; 0000-0002-4273-6644 ; 0000-0001-8885-3785 ; 0000-0003-3877-8101 ; 0000-0001-7178-9430 ; 0000-0002-8198-8131 ; 0000-0003-3464-7825 ; 0000-0002-5312-4950 ; 0000-0002-1191-0128 ; 0000-0002-3537-3005 ; 0000-0003-2109-9559 ; 0000-0002-0068-2430 ; 0000-0002-8760-7803 ; 0000-0003-3222-9881 ; 0000-0002-3954-9995 ; 0000-0002-1603-7049 ; 0009-0005-5086-3693 ; 0000000239549995 ; 0000000211910128 ; 0009000550863693 ; 0000000200682430 ; 0000000321099559 ; 0000000281988131 ; 0000000253124950 ; 0000000308344564 ; 0000000332229881 ; 0000000338778101 ; 0000000216037049 ; 0000000242736644 ; 0000000287607803 ; 0000000171789430 ; 0000000334647825 ; 0009000355350761 ; 0000000235373005 ; 0000000188853785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39541451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2478847$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Toll, Velle</creatorcontrib><creatorcontrib>Rahu, Jorma</creatorcontrib><creatorcontrib>Keernik, Hannes</creatorcontrib><creatorcontrib>Trofimov, Heido</creatorcontrib><creatorcontrib>Voormansik, Tanel</creatorcontrib><creatorcontrib>Manshausen, Peter</creatorcontrib><creatorcontrib>Hung, Emma</creatorcontrib><creatorcontrib>Michelson, Daniel</creatorcontrib><creatorcontrib>Christensen, Matthew W</creatorcontrib><creatorcontrib>Post, Piia</creatorcontrib><creatorcontrib>Junninen, Heikki</creatorcontrib><creatorcontrib>Murray, Benjamin J</creatorcontrib><creatorcontrib>Lohmann, Ulrike</creatorcontrib><creatorcontrib>Watson-Parris, Duncan</creatorcontrib><creatorcontrib>Stier, Philip</creatorcontrib><creatorcontrib>Donaldson, Norman</creatorcontrib><creatorcontrib>Storelvmo, Trude</creatorcontrib><creatorcontrib>Kulmala, Markku</creatorcontrib><creatorcontrib>Bellouin, Nicolas</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Glaciation of liquid clouds, snowfall, and reduced cloud cover at industrial aerosol hot spots</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between -10° and -24°C. Compared with the nearby liquid-water clouds, shortwave reflectance was reduced by 14% and longwave radiance was increased by 4% in the glaciation-affected regions. There was an 8% reduction in cloud cover and an 18% reduction in cloud optical thickness. Additionally, daily glaciation-induced snowfall accumulations reached 15 millimeters. Glaciation events downwind of industrial aerosol hot spots indicate that anthropogenic aerosols likely serve as ice-nucleating particles. However, rare glaciation events downwind of nuclear power plants indicate that factors other than aerosol emissions may also play a role in the observed glaciation events.</description><subject>Air pollution</subject><subject>Anthropogenic factors</subject><subject>Cloud cover</subject><subject>Coal-fired power plants</subject><subject>Glaciation</subject><subject>Glaciology</subject><subject>Human influences</subject><subject>Ice cover</subject><subject>Ice formation</subject><subject>Industrial pollution</subject><subject>Oil refineries</subject><subject>Optical properties</subject><subject>Optical thickness</subject><subject>Power plants</subject><subject>Refineries</subject><subject>Snowfall</subject><subject>Solar radiation</subject><subject>Water drops</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkb1PHDEQxa0oKByX1OmQFRoKFvyx9q7LCAGJdBINaWOZsVcY-ezD9oLy38fkFoo0M8X8ZvTePIS-UnJOKZMXBbyL4M6NDYQT_gGtKFGiU4zwj2hFCJfdSAZxiI5KeSSkzRT_hA65Ej3tBV2h3zfBgDfVp4jThIN_mr3FENJsyxkuMb1MJoQzbKLF2dkZ3DLFkJ5dxqZiH-1cavYmYONyKingh1Rx2aVaPqODtl_cl6Wv0a_rq7vLH93m9ubn5fdNB4zL2olWrZO0KTQgrVBikBYmKRU1Uy_JwBSd1MSY7RmDe66IBDrZQQAZAATha_RtfzeV6nX7SnXwAClGB1WzfhjHfmjQ6R7a5fQ0u1L11hdwIZjo0lw0p2wcmRBNzRqd_Ic-pjnHZuEf1eQQJhp1saeg2S7ZTXqX_dbkP5oS_ZqPXvLRSz5t43i5O99vnX3n3wLhfwEoLYyN</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Toll, Velle</creator><creator>Rahu, Jorma</creator><creator>Keernik, Hannes</creator><creator>Trofimov, Heido</creator><creator>Voormansik, Tanel</creator><creator>Manshausen, Peter</creator><creator>Hung, Emma</creator><creator>Michelson, Daniel</creator><creator>Christensen, Matthew W</creator><creator>Post, Piia</creator><creator>Junninen, Heikki</creator><creator>Murray, Benjamin J</creator><creator>Lohmann, Ulrike</creator><creator>Watson-Parris, Duncan</creator><creator>Stier, Philip</creator><creator>Donaldson, Norman</creator><creator>Storelvmo, Trude</creator><creator>Kulmala, Markku</creator><creator>Bellouin, Nicolas</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0009-0003-5535-0761</orcidid><orcidid>https://orcid.org/0000-0003-0834-4564</orcidid><orcidid>https://orcid.org/0000-0002-4273-6644</orcidid><orcidid>https://orcid.org/0000-0001-8885-3785</orcidid><orcidid>https://orcid.org/0000-0003-3877-8101</orcidid><orcidid>https://orcid.org/0000-0001-7178-9430</orcidid><orcidid>https://orcid.org/0000-0002-8198-8131</orcidid><orcidid>https://orcid.org/0000-0003-3464-7825</orcidid><orcidid>https://orcid.org/0000-0002-5312-4950</orcidid><orcidid>https://orcid.org/0000-0002-1191-0128</orcidid><orcidid>https://orcid.org/0000-0002-3537-3005</orcidid><orcidid>https://orcid.org/0000-0003-2109-9559</orcidid><orcidid>https://orcid.org/0000-0002-0068-2430</orcidid><orcidid>https://orcid.org/0000-0002-8760-7803</orcidid><orcidid>https://orcid.org/0000-0003-3222-9881</orcidid><orcidid>https://orcid.org/0000-0002-3954-9995</orcidid><orcidid>https://orcid.org/0000-0002-1603-7049</orcidid><orcidid>https://orcid.org/0009-0005-5086-3693</orcidid><orcidid>https://orcid.org/0000000239549995</orcidid><orcidid>https://orcid.org/0000000211910128</orcidid><orcidid>https://orcid.org/0009000550863693</orcidid><orcidid>https://orcid.org/0000000200682430</orcidid><orcidid>https://orcid.org/0000000321099559</orcidid><orcidid>https://orcid.org/0000000281988131</orcidid><orcidid>https://orcid.org/0000000253124950</orcidid><orcidid>https://orcid.org/0000000308344564</orcidid><orcidid>https://orcid.org/0000000332229881</orcidid><orcidid>https://orcid.org/0000000338778101</orcidid><orcidid>https://orcid.org/0000000216037049</orcidid><orcidid>https://orcid.org/0000000242736644</orcidid><orcidid>https://orcid.org/0000000287607803</orcidid><orcidid>https://orcid.org/0000000171789430</orcidid><orcidid>https://orcid.org/0000000334647825</orcidid><orcidid>https://orcid.org/0009000355350761</orcidid><orcidid>https://orcid.org/0000000235373005</orcidid><orcidid>https://orcid.org/0000000188853785</orcidid></search><sort><creationdate>20241115</creationdate><title>Glaciation of liquid clouds, snowfall, and reduced cloud cover at industrial aerosol hot spots</title><author>Toll, Velle ; Rahu, Jorma ; Keernik, Hannes ; Trofimov, Heido ; Voormansik, Tanel ; Manshausen, Peter ; Hung, Emma ; Michelson, Daniel ; Christensen, Matthew W ; Post, Piia ; Junninen, Heikki ; Murray, Benjamin J ; Lohmann, Ulrike ; Watson-Parris, Duncan ; Stier, Philip ; Donaldson, Norman ; Storelvmo, Trude ; Kulmala, Markku ; Bellouin, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-5236de61000ac6d59576dcf6691af4607291f9f22d422cb3906c1fd75c07cc503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air pollution</topic><topic>Anthropogenic factors</topic><topic>Cloud cover</topic><topic>Coal-fired power plants</topic><topic>Glaciation</topic><topic>Glaciology</topic><topic>Human influences</topic><topic>Ice cover</topic><topic>Ice formation</topic><topic>Industrial pollution</topic><topic>Oil refineries</topic><topic>Optical properties</topic><topic>Optical thickness</topic><topic>Power plants</topic><topic>Refineries</topic><topic>Snowfall</topic><topic>Solar radiation</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toll, Velle</creatorcontrib><creatorcontrib>Rahu, Jorma</creatorcontrib><creatorcontrib>Keernik, Hannes</creatorcontrib><creatorcontrib>Trofimov, Heido</creatorcontrib><creatorcontrib>Voormansik, Tanel</creatorcontrib><creatorcontrib>Manshausen, Peter</creatorcontrib><creatorcontrib>Hung, Emma</creatorcontrib><creatorcontrib>Michelson, Daniel</creatorcontrib><creatorcontrib>Christensen, Matthew W</creatorcontrib><creatorcontrib>Post, Piia</creatorcontrib><creatorcontrib>Junninen, Heikki</creatorcontrib><creatorcontrib>Murray, Benjamin J</creatorcontrib><creatorcontrib>Lohmann, Ulrike</creatorcontrib><creatorcontrib>Watson-Parris, Duncan</creatorcontrib><creatorcontrib>Stier, Philip</creatorcontrib><creatorcontrib>Donaldson, Norman</creatorcontrib><creatorcontrib>Storelvmo, Trude</creatorcontrib><creatorcontrib>Kulmala, Markku</creatorcontrib><creatorcontrib>Bellouin, Nicolas</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toll, Velle</au><au>Rahu, Jorma</au><au>Keernik, Hannes</au><au>Trofimov, Heido</au><au>Voormansik, Tanel</au><au>Manshausen, Peter</au><au>Hung, Emma</au><au>Michelson, Daniel</au><au>Christensen, Matthew W</au><au>Post, Piia</au><au>Junninen, Heikki</au><au>Murray, Benjamin J</au><au>Lohmann, Ulrike</au><au>Watson-Parris, Duncan</au><au>Stier, Philip</au><au>Donaldson, Norman</au><au>Storelvmo, Trude</au><au>Kulmala, Markku</au><au>Bellouin, Nicolas</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glaciation of liquid clouds, snowfall, and reduced cloud cover at industrial aerosol hot spots</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2024-11-15</date><risdate>2024</risdate><volume>386</volume><issue>6723</issue><spage>756</spage><epage>762</epage><pages>756-762</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between -10° and -24°C. Compared with the nearby liquid-water clouds, shortwave reflectance was reduced by 14% and longwave radiance was increased by 4% in the glaciation-affected regions. There was an 8% reduction in cloud cover and an 18% reduction in cloud optical thickness. Additionally, daily glaciation-induced snowfall accumulations reached 15 millimeters. Glaciation events downwind of industrial aerosol hot spots indicate that anthropogenic aerosols likely serve as ice-nucleating particles. However, rare glaciation events downwind of nuclear power plants indicate that factors other than aerosol emissions may also play a role in the observed glaciation events.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>39541451</pmid><doi>10.1126/science.adl0303</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0003-5535-0761</orcidid><orcidid>https://orcid.org/0000-0003-0834-4564</orcidid><orcidid>https://orcid.org/0000-0002-4273-6644</orcidid><orcidid>https://orcid.org/0000-0001-8885-3785</orcidid><orcidid>https://orcid.org/0000-0003-3877-8101</orcidid><orcidid>https://orcid.org/0000-0001-7178-9430</orcidid><orcidid>https://orcid.org/0000-0002-8198-8131</orcidid><orcidid>https://orcid.org/0000-0003-3464-7825</orcidid><orcidid>https://orcid.org/0000-0002-5312-4950</orcidid><orcidid>https://orcid.org/0000-0002-1191-0128</orcidid><orcidid>https://orcid.org/0000-0002-3537-3005</orcidid><orcidid>https://orcid.org/0000-0003-2109-9559</orcidid><orcidid>https://orcid.org/0000-0002-0068-2430</orcidid><orcidid>https://orcid.org/0000-0002-8760-7803</orcidid><orcidid>https://orcid.org/0000-0003-3222-9881</orcidid><orcidid>https://orcid.org/0000-0002-3954-9995</orcidid><orcidid>https://orcid.org/0000-0002-1603-7049</orcidid><orcidid>https://orcid.org/0009-0005-5086-3693</orcidid><orcidid>https://orcid.org/0000000239549995</orcidid><orcidid>https://orcid.org/0000000211910128</orcidid><orcidid>https://orcid.org/0009000550863693</orcidid><orcidid>https://orcid.org/0000000200682430</orcidid><orcidid>https://orcid.org/0000000321099559</orcidid><orcidid>https://orcid.org/0000000281988131</orcidid><orcidid>https://orcid.org/0000000253124950</orcidid><orcidid>https://orcid.org/0000000308344564</orcidid><orcidid>https://orcid.org/0000000332229881</orcidid><orcidid>https://orcid.org/0000000338778101</orcidid><orcidid>https://orcid.org/0000000216037049</orcidid><orcidid>https://orcid.org/0000000242736644</orcidid><orcidid>https://orcid.org/0000000287607803</orcidid><orcidid>https://orcid.org/0000000171789430</orcidid><orcidid>https://orcid.org/0000000334647825</orcidid><orcidid>https://orcid.org/0009000355350761</orcidid><orcidid>https://orcid.org/0000000235373005</orcidid><orcidid>https://orcid.org/0000000188853785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2024-11, Vol.386 (6723), p.756-762
issn 0036-8075
1095-9203
1095-9203
language eng
recordid cdi_osti_scitechconnect_2478847
source Science Magazine
subjects Air pollution
Anthropogenic factors
Cloud cover
Coal-fired power plants
Glaciation
Glaciology
Human influences
Ice cover
Ice formation
Industrial pollution
Oil refineries
Optical properties
Optical thickness
Power plants
Refineries
Snowfall
Solar radiation
Water drops
title Glaciation of liquid clouds, snowfall, and reduced cloud cover at industrial aerosol hot spots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glaciation%20of%20liquid%20clouds,%20snowfall,%20and%20reduced%20cloud%20cover%20at%20industrial%20aerosol%20hot%20spots&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Toll,%20Velle&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-11-15&rft.volume=386&rft.issue=6723&rft.spage=756&rft.epage=762&rft.pages=756-762&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.adl0303&rft_dat=%3Cproquest_osti_%3E3128825552%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128291025&rft_id=info:pmid/39541451&rfr_iscdi=true