A dynamic volumetric heat source model for laser additive manufacturing

Melt pool scale models of laser powder bed fusion (LPBF) offer insights into the process-structure-property relationships in additive manufacturing (AM). These models often neglect physical phenomena such as vapor cavity formation and fluid mechanics to reduce computational demands. Instead, volumet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Additive manufacturing 2024-11, Vol.95
Hauptverfasser: Coleman, John, Knapp, Gerry L., Stump, Benjamin, Rolchigo, Matt, Kincaid, Kellis, Plotkowski, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Additive manufacturing
container_volume 95
creator Coleman, John
Knapp, Gerry L.
Stump, Benjamin
Rolchigo, Matt
Kincaid, Kellis
Plotkowski, Alex
description Melt pool scale models of laser powder bed fusion (LPBF) offer insights into the process-structure-property relationships in additive manufacturing (AM). These models often neglect physical phenomena such as vapor cavity formation and fluid mechanics to reduce computational demands. Instead, volumetric heat source models are used to represent the effects that these phenomena have on the predicted melt pool dimensions. Generally, the dimensions and effective absorption of the volumetric heat source are calibrated to reproduce melt pool dimensions observed in metallographic cross sections taken from single-track experiments on bare plate. However, the transient nature of LPBF often deviates the melt pool dimensions from the assumed steady-state conditions of single-track experiments, motivating the need for a volumetric heat source model that more generally considers the dynamic relationship between melt pool shape and laser-material interactions. Here, we introduce a two-parameter volumetric heat source model that integrates several existing models into a generalized mathematical expression, providing independent control over the radial heat distribution via the parameter k and the volumetric shape of the heat source via the parameter m. This parameterization enables the calibration of melt pool shape predictions through simultaneous adjustment of these parameters, while keeping the radial heat source dimensions consistent with the experimental spot size (D4σ) and constraining the heat source depth and absorption to physically derived expressions for cavities. Consequently, the proposed volumetric heat source model adapts to changes in the local melt pool conditions due to scanning strategy and part geometry by dynamically adjusting the heat source depth and absorption. We demonstrate the capabilities of the proposed model through comparisons with a collection of experiments from the Additive Manufacturing Benchmark (AMBench).
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2478364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478364</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24783643</originalsourceid><addsrcrecordid>eNqNiksKwjAUALNQsGjv8HBfSNPY1qWInwO4LyF5tZE0geRF8PZ24QFczcDMihVC1LLqWy43rEzpxTmvD0137EXBbicwH69mq-EdXJ6R4qITKoIUctQIczDoYAwRnEoYQRljyb6XoHwelaYcrX_u2HpULmH545btr5fH-V6FRHZI2hLqSQfvUdMgZNc3rWz-mr6_dDwd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A dynamic volumetric heat source model for laser additive manufacturing</title><source>Alma/SFX Local Collection</source><creator>Coleman, John ; Knapp, Gerry L. ; Stump, Benjamin ; Rolchigo, Matt ; Kincaid, Kellis ; Plotkowski, Alex</creator><creatorcontrib>Coleman, John ; Knapp, Gerry L. ; Stump, Benjamin ; Rolchigo, Matt ; Kincaid, Kellis ; Plotkowski, Alex ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Melt pool scale models of laser powder bed fusion (LPBF) offer insights into the process-structure-property relationships in additive manufacturing (AM). These models often neglect physical phenomena such as vapor cavity formation and fluid mechanics to reduce computational demands. Instead, volumetric heat source models are used to represent the effects that these phenomena have on the predicted melt pool dimensions. Generally, the dimensions and effective absorption of the volumetric heat source are calibrated to reproduce melt pool dimensions observed in metallographic cross sections taken from single-track experiments on bare plate. However, the transient nature of LPBF often deviates the melt pool dimensions from the assumed steady-state conditions of single-track experiments, motivating the need for a volumetric heat source model that more generally considers the dynamic relationship between melt pool shape and laser-material interactions. Here, we introduce a two-parameter volumetric heat source model that integrates several existing models into a generalized mathematical expression, providing independent control over the radial heat distribution via the parameter k and the volumetric shape of the heat source via the parameter m. This parameterization enables the calibration of melt pool shape predictions through simultaneous adjustment of these parameters, while keeping the radial heat source dimensions consistent with the experimental spot size (D4σ) and constraining the heat source depth and absorption to physically derived expressions for cavities. Consequently, the proposed volumetric heat source model adapts to changes in the local melt pool conditions due to scanning strategy and part geometry by dynamically adjusting the heat source depth and absorption. We demonstrate the capabilities of the proposed model through comparisons with a collection of experiments from the Additive Manufacturing Benchmark (AMBench).</description><identifier>ISSN: 2214-8604</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Additive manufacturing ; ENGINEERING ; Heat source calibration ; Heat Transfer ; Laser powder bed fusion ; MATERIALS SCIENCE ; Process modeling</subject><ispartof>Additive manufacturing, 2024-11, Vol.95</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000272613143 ; 000000022023992X ; 0000000212907262 ; 0000000154718681 ; 000000020147553X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2478364$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Coleman, John</creatorcontrib><creatorcontrib>Knapp, Gerry L.</creatorcontrib><creatorcontrib>Stump, Benjamin</creatorcontrib><creatorcontrib>Rolchigo, Matt</creatorcontrib><creatorcontrib>Kincaid, Kellis</creatorcontrib><creatorcontrib>Plotkowski, Alex</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>A dynamic volumetric heat source model for laser additive manufacturing</title><title>Additive manufacturing</title><description>Melt pool scale models of laser powder bed fusion (LPBF) offer insights into the process-structure-property relationships in additive manufacturing (AM). These models often neglect physical phenomena such as vapor cavity formation and fluid mechanics to reduce computational demands. Instead, volumetric heat source models are used to represent the effects that these phenomena have on the predicted melt pool dimensions. Generally, the dimensions and effective absorption of the volumetric heat source are calibrated to reproduce melt pool dimensions observed in metallographic cross sections taken from single-track experiments on bare plate. However, the transient nature of LPBF often deviates the melt pool dimensions from the assumed steady-state conditions of single-track experiments, motivating the need for a volumetric heat source model that more generally considers the dynamic relationship between melt pool shape and laser-material interactions. Here, we introduce a two-parameter volumetric heat source model that integrates several existing models into a generalized mathematical expression, providing independent control over the radial heat distribution via the parameter k and the volumetric shape of the heat source via the parameter m. This parameterization enables the calibration of melt pool shape predictions through simultaneous adjustment of these parameters, while keeping the radial heat source dimensions consistent with the experimental spot size (D4σ) and constraining the heat source depth and absorption to physically derived expressions for cavities. Consequently, the proposed volumetric heat source model adapts to changes in the local melt pool conditions due to scanning strategy and part geometry by dynamically adjusting the heat source depth and absorption. We demonstrate the capabilities of the proposed model through comparisons with a collection of experiments from the Additive Manufacturing Benchmark (AMBench).</description><subject>Additive manufacturing</subject><subject>ENGINEERING</subject><subject>Heat source calibration</subject><subject>Heat Transfer</subject><subject>Laser powder bed fusion</subject><subject>MATERIALS SCIENCE</subject><subject>Process modeling</subject><issn>2214-8604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNiksKwjAUALNQsGjv8HBfSNPY1qWInwO4LyF5tZE0geRF8PZ24QFczcDMihVC1LLqWy43rEzpxTmvD0137EXBbicwH69mq-EdXJ6R4qITKoIUctQIczDoYAwRnEoYQRljyb6XoHwelaYcrX_u2HpULmH545btr5fH-V6FRHZI2hLqSQfvUdMgZNc3rWz-mr6_dDwd</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Coleman, John</creator><creator>Knapp, Gerry L.</creator><creator>Stump, Benjamin</creator><creator>Rolchigo, Matt</creator><creator>Kincaid, Kellis</creator><creator>Plotkowski, Alex</creator><general>Elsevier</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000272613143</orcidid><orcidid>https://orcid.org/000000022023992X</orcidid><orcidid>https://orcid.org/0000000212907262</orcidid><orcidid>https://orcid.org/0000000154718681</orcidid><orcidid>https://orcid.org/000000020147553X</orcidid></search><sort><creationdate>20241104</creationdate><title>A dynamic volumetric heat source model for laser additive manufacturing</title><author>Coleman, John ; Knapp, Gerry L. ; Stump, Benjamin ; Rolchigo, Matt ; Kincaid, Kellis ; Plotkowski, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24783643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additive manufacturing</topic><topic>ENGINEERING</topic><topic>Heat source calibration</topic><topic>Heat Transfer</topic><topic>Laser powder bed fusion</topic><topic>MATERIALS SCIENCE</topic><topic>Process modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coleman, John</creatorcontrib><creatorcontrib>Knapp, Gerry L.</creatorcontrib><creatorcontrib>Stump, Benjamin</creatorcontrib><creatorcontrib>Rolchigo, Matt</creatorcontrib><creatorcontrib>Kincaid, Kellis</creatorcontrib><creatorcontrib>Plotkowski, Alex</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Additive manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coleman, John</au><au>Knapp, Gerry L.</au><au>Stump, Benjamin</au><au>Rolchigo, Matt</au><au>Kincaid, Kellis</au><au>Plotkowski, Alex</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic volumetric heat source model for laser additive manufacturing</atitle><jtitle>Additive manufacturing</jtitle><date>2024-11-04</date><risdate>2024</risdate><volume>95</volume><issn>2214-8604</issn><abstract>Melt pool scale models of laser powder bed fusion (LPBF) offer insights into the process-structure-property relationships in additive manufacturing (AM). These models often neglect physical phenomena such as vapor cavity formation and fluid mechanics to reduce computational demands. Instead, volumetric heat source models are used to represent the effects that these phenomena have on the predicted melt pool dimensions. Generally, the dimensions and effective absorption of the volumetric heat source are calibrated to reproduce melt pool dimensions observed in metallographic cross sections taken from single-track experiments on bare plate. However, the transient nature of LPBF often deviates the melt pool dimensions from the assumed steady-state conditions of single-track experiments, motivating the need for a volumetric heat source model that more generally considers the dynamic relationship between melt pool shape and laser-material interactions. Here, we introduce a two-parameter volumetric heat source model that integrates several existing models into a generalized mathematical expression, providing independent control over the radial heat distribution via the parameter k and the volumetric shape of the heat source via the parameter m. This parameterization enables the calibration of melt pool shape predictions through simultaneous adjustment of these parameters, while keeping the radial heat source dimensions consistent with the experimental spot size (D4σ) and constraining the heat source depth and absorption to physically derived expressions for cavities. Consequently, the proposed volumetric heat source model adapts to changes in the local melt pool conditions due to scanning strategy and part geometry by dynamically adjusting the heat source depth and absorption. We demonstrate the capabilities of the proposed model through comparisons with a collection of experiments from the Additive Manufacturing Benchmark (AMBench).</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000272613143</orcidid><orcidid>https://orcid.org/000000022023992X</orcidid><orcidid>https://orcid.org/0000000212907262</orcidid><orcidid>https://orcid.org/0000000154718681</orcidid><orcidid>https://orcid.org/000000020147553X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2214-8604
ispartof Additive manufacturing, 2024-11, Vol.95
issn 2214-8604
language eng
recordid cdi_osti_scitechconnect_2478364
source Alma/SFX Local Collection
subjects Additive manufacturing
ENGINEERING
Heat source calibration
Heat Transfer
Laser powder bed fusion
MATERIALS SCIENCE
Process modeling
title A dynamic volumetric heat source model for laser additive manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20volumetric%20heat%20source%20model%20for%20laser%20additive%20manufacturing&rft.jtitle=Additive%20manufacturing&rft.au=Coleman,%20John&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-11-04&rft.volume=95&rft.issn=2214-8604&rft_id=info:doi/&rft_dat=%3Costi%3E2478364%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true