Local Chemical Enhancement and Gating of Organic Coordinated Ionic-Electronic Transport

Superior properties in organic mixed ionic-electronic conductors (OMIECs) over inorganic counterparts have inspired intense interest in biosensing, soft-robotics, neuromorphic computing, and smart medicine. However, slow ion transport relative to charge transport in these materials is a limiting fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-11, p.e2406281
Hauptverfasser: Khan, Tamanna, McAfee, Terry, Ferron, Thomas J, Alotaibi, Awwad, Collins, Brian A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e2406281
container_title Advanced materials (Weinheim)
container_volume
creator Khan, Tamanna
McAfee, Terry
Ferron, Thomas J
Alotaibi, Awwad
Collins, Brian A
description Superior properties in organic mixed ionic-electronic conductors (OMIECs) over inorganic counterparts have inspired intense interest in biosensing, soft-robotics, neuromorphic computing, and smart medicine. However, slow ion transport relative to charge transport in these materials is a limiting factor. Here, it is demonstrated that hydrophilic molecules local to an interfacial OMIEC nanochannel can accelerate ion transport with ion mobilities surpassing electrophoretic transport by more than an order of magnitude. Furthermore, ion access to this interfacial channel can be gated through local surface energy. This mechanism is applied in a novel sensing device, which electronically detects and characterizes chemical reaction dynamics local to the buried channel. The ability to enhance ion transport at the nanoscale in OMIECs as well as govern ion transport through local chemical signaling enables new functionalities for printable, stretchable, and biocompatible mixed conduction devices.
doi_str_mv 10.1002/adma.202406281
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2478197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130826801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-16f7f1a5e73e919020296dd728ecdace55a8260b78c20b3105c11a969286277a3</originalsourceid><addsrcrecordid>eNo9kM1PwzAMxSMEYuPjyhFVnLh02OmaNEc0jTFp0i4gjpGXpqyoTUaSHfjv6TTYyU_Wz8_2Y-wOYYIA_InqniYc-BQEr_CMjbHkmE9BledsDKoocyWm1YhdxfgFAEqAuGSjQpWCo8Qx-1h5Q10229q-PYi525IztrcuZeTqbEGpdZ-Zb7J1-CTXmmzmfahbR8nW2dIPnXzeWZPCQWZvgVzc-ZBu2EVDXbS3f_Wavb_M32av-Wq9WM6eV7nhU5lyFI1skEorC6tQwfCJEnUteWVNTcaWJVVcwEZWhsOmQCgNIimheCW4lFRcs4ejr4-p1dG0yZqt8c4NJ-lhRYVKDtDjEdoF_723Mem-jcZ2HTnr91EXWMCwpgIc0MkRNcHHGGyjd6HtKfxoBH1IXB8S16fEh4H7P-_9prf1Cf-PuPgFdV16tQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130826801</pqid></control><display><type>article</type><title>Local Chemical Enhancement and Gating of Organic Coordinated Ionic-Electronic Transport</title><source>Wiley Online Library All Journals</source><creator>Khan, Tamanna ; McAfee, Terry ; Ferron, Thomas J ; Alotaibi, Awwad ; Collins, Brian A</creator><creatorcontrib>Khan, Tamanna ; McAfee, Terry ; Ferron, Thomas J ; Alotaibi, Awwad ; Collins, Brian A ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><description>Superior properties in organic mixed ionic-electronic conductors (OMIECs) over inorganic counterparts have inspired intense interest in biosensing, soft-robotics, neuromorphic computing, and smart medicine. However, slow ion transport relative to charge transport in these materials is a limiting factor. Here, it is demonstrated that hydrophilic molecules local to an interfacial OMIEC nanochannel can accelerate ion transport with ion mobilities surpassing electrophoretic transport by more than an order of magnitude. Furthermore, ion access to this interfacial channel can be gated through local surface energy. This mechanism is applied in a novel sensing device, which electronically detects and characterizes chemical reaction dynamics local to the buried channel. The ability to enhance ion transport at the nanoscale in OMIECs as well as govern ion transport through local chemical signaling enables new functionalities for printable, stretchable, and biocompatible mixed conduction devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202406281</identifier><identifier>PMID: 39562171</identifier><language>eng</language><publisher>Germany: Wiley</publisher><subject>chemical sensing ; interfacial transport ; ion mobility and conductivity ; organic electronics ; organic mixed ionic-electronic conductors (OMIEC)</subject><ispartof>Advanced materials (Weinheim), 2024-11, p.e2406281</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-16f7f1a5e73e919020296dd728ecdace55a8260b78c20b3105c11a969286277a3</cites><orcidid>0000-0003-3970-2846 ; 0000-0003-2047-8418 ; 0000-0001-8743-8328 ; 0000-0002-2242-2648 ; 0000000222422648 ; 0000000320478418 ; 0000000187438328 ; 0000000339702846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39562171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2478197$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Tamanna</creatorcontrib><creatorcontrib>McAfee, Terry</creatorcontrib><creatorcontrib>Ferron, Thomas J</creatorcontrib><creatorcontrib>Alotaibi, Awwad</creatorcontrib><creatorcontrib>Collins, Brian A</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><title>Local Chemical Enhancement and Gating of Organic Coordinated Ionic-Electronic Transport</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Superior properties in organic mixed ionic-electronic conductors (OMIECs) over inorganic counterparts have inspired intense interest in biosensing, soft-robotics, neuromorphic computing, and smart medicine. However, slow ion transport relative to charge transport in these materials is a limiting factor. Here, it is demonstrated that hydrophilic molecules local to an interfacial OMIEC nanochannel can accelerate ion transport with ion mobilities surpassing electrophoretic transport by more than an order of magnitude. Furthermore, ion access to this interfacial channel can be gated through local surface energy. This mechanism is applied in a novel sensing device, which electronically detects and characterizes chemical reaction dynamics local to the buried channel. The ability to enhance ion transport at the nanoscale in OMIECs as well as govern ion transport through local chemical signaling enables new functionalities for printable, stretchable, and biocompatible mixed conduction devices.</description><subject>chemical sensing</subject><subject>interfacial transport</subject><subject>ion mobility and conductivity</subject><subject>organic electronics</subject><subject>organic mixed ionic-electronic conductors (OMIEC)</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PwzAMxSMEYuPjyhFVnLh02OmaNEc0jTFp0i4gjpGXpqyoTUaSHfjv6TTYyU_Wz8_2Y-wOYYIA_InqniYc-BQEr_CMjbHkmE9BledsDKoocyWm1YhdxfgFAEqAuGSjQpWCo8Qx-1h5Q10229q-PYi525IztrcuZeTqbEGpdZ-Zb7J1-CTXmmzmfahbR8nW2dIPnXzeWZPCQWZvgVzc-ZBu2EVDXbS3f_Wavb_M32av-Wq9WM6eV7nhU5lyFI1skEorC6tQwfCJEnUteWVNTcaWJVVcwEZWhsOmQCgNIimheCW4lFRcs4ejr4-p1dG0yZqt8c4NJ-lhRYVKDtDjEdoF_723Mem-jcZ2HTnr91EXWMCwpgIc0MkRNcHHGGyjd6HtKfxoBH1IXB8S16fEh4H7P-_9prf1Cf-PuPgFdV16tQ</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Khan, Tamanna</creator><creator>McAfee, Terry</creator><creator>Ferron, Thomas J</creator><creator>Alotaibi, Awwad</creator><creator>Collins, Brian A</creator><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3970-2846</orcidid><orcidid>https://orcid.org/0000-0003-2047-8418</orcidid><orcidid>https://orcid.org/0000-0001-8743-8328</orcidid><orcidid>https://orcid.org/0000-0002-2242-2648</orcidid><orcidid>https://orcid.org/0000000222422648</orcidid><orcidid>https://orcid.org/0000000320478418</orcidid><orcidid>https://orcid.org/0000000187438328</orcidid><orcidid>https://orcid.org/0000000339702846</orcidid></search><sort><creationdate>20241119</creationdate><title>Local Chemical Enhancement and Gating of Organic Coordinated Ionic-Electronic Transport</title><author>Khan, Tamanna ; McAfee, Terry ; Ferron, Thomas J ; Alotaibi, Awwad ; Collins, Brian A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-16f7f1a5e73e919020296dd728ecdace55a8260b78c20b3105c11a969286277a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>chemical sensing</topic><topic>interfacial transport</topic><topic>ion mobility and conductivity</topic><topic>organic electronics</topic><topic>organic mixed ionic-electronic conductors (OMIEC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Tamanna</creatorcontrib><creatorcontrib>McAfee, Terry</creatorcontrib><creatorcontrib>Ferron, Thomas J</creatorcontrib><creatorcontrib>Alotaibi, Awwad</creatorcontrib><creatorcontrib>Collins, Brian A</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Tamanna</au><au>McAfee, Terry</au><au>Ferron, Thomas J</au><au>Alotaibi, Awwad</au><au>Collins, Brian A</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Chemical Enhancement and Gating of Organic Coordinated Ionic-Electronic Transport</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-11-19</date><risdate>2024</risdate><spage>e2406281</spage><pages>e2406281-</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Superior properties in organic mixed ionic-electronic conductors (OMIECs) over inorganic counterparts have inspired intense interest in biosensing, soft-robotics, neuromorphic computing, and smart medicine. However, slow ion transport relative to charge transport in these materials is a limiting factor. Here, it is demonstrated that hydrophilic molecules local to an interfacial OMIEC nanochannel can accelerate ion transport with ion mobilities surpassing electrophoretic transport by more than an order of magnitude. Furthermore, ion access to this interfacial channel can be gated through local surface energy. This mechanism is applied in a novel sensing device, which electronically detects and characterizes chemical reaction dynamics local to the buried channel. The ability to enhance ion transport at the nanoscale in OMIECs as well as govern ion transport through local chemical signaling enables new functionalities for printable, stretchable, and biocompatible mixed conduction devices.</abstract><cop>Germany</cop><pub>Wiley</pub><pmid>39562171</pmid><doi>10.1002/adma.202406281</doi><orcidid>https://orcid.org/0000-0003-3970-2846</orcidid><orcidid>https://orcid.org/0000-0003-2047-8418</orcidid><orcidid>https://orcid.org/0000-0001-8743-8328</orcidid><orcidid>https://orcid.org/0000-0002-2242-2648</orcidid><orcidid>https://orcid.org/0000000222422648</orcidid><orcidid>https://orcid.org/0000000320478418</orcidid><orcidid>https://orcid.org/0000000187438328</orcidid><orcidid>https://orcid.org/0000000339702846</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-11, p.e2406281
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_osti_scitechconnect_2478197
source Wiley Online Library All Journals
subjects chemical sensing
interfacial transport
ion mobility and conductivity
organic electronics
organic mixed ionic-electronic conductors (OMIEC)
title Local Chemical Enhancement and Gating of Organic Coordinated Ionic-Electronic Transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Chemical%20Enhancement%20and%20Gating%20of%20Organic%20Coordinated%20Ionic-Electronic%20Transport&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Khan,%20Tamanna&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20Advanced%20Light%20Source%20(ALS)&rft.date=2024-11-19&rft.spage=e2406281&rft.pages=e2406281-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202406281&rft_dat=%3Cproquest_osti_%3E3130826801%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130826801&rft_id=info:pmid/39562171&rfr_iscdi=true