Colossal Strain Tuning of Ferroelectric Transitions in KNbO 3 Thin Films
Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO thin films grown by sub-oxide molecular beam epitaxy is demonstrated. While bul...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-11, p.e2408664 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | e2408664 |
container_title | Advanced materials (Weinheim) |
container_volume | |
creator | Hazra, Sankalpa Schwaigert, Tobias Ross, Aiden Lu, Haidong Saha, Utkarsh Trinquet, Victor Akkopru-Akgun, Betul Gregory, Benjamin Z Mangu, Anudeep Sarker, Suchismita Kuznetsova, Tatiana Sarker, Saugata Li, Xin Barone, Matthew R Xu, Xiaoshan Freeland, John W Engel-Herbert, Roman Lindenberg, Aaron M Singer, Andrej Trolier-McKinstry, Susan Muller, David A Rignanese, Gian-Marco Salmani-Rezaie, Salva Stoica, Vladimir A Gruverman, Alexei Chen, Long-Qing Schlom, Darrell G Gopalan, Venkatraman |
description | Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO
thin films grown by sub-oxide molecular beam epitaxy is demonstrated. While bulk KNbO
exhibits three ferroelectric transitions and a Curie temperature (T
) of ≈676 K, phase-field modeling predicts that a biaxial strain of as little as -0.6% pushes its T
> 975 K, its decomposition temperature in air, and for -1.4% strain, to T
> 1325 K, its melting point. Furthermore, a strain of -1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature-dependent second harmonic generation measurements, synchrotron-based X-ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (P
), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead-free system, but with properties comparable or superior to lead-based systems, make it an attractive candidate for applications ranging from high-temperature ferroelectric memory to cryogenic temperature quantum computing. |
doi_str_mv | 10.1002/adma.202408664 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2478182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39533481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c891-bbd1025e2d840fecdc629136cd458651941ae3fd833f8618fb1fa5ab5a7d4a883</originalsourceid><addsrcrecordid>eNo9kDtPwzAURi0EoqWwMiKLPcXv2iOqKEVUdCC75fhBjRKnstOBf0-qQqd7h_N9uvcAcI_RHCNEnozrzJwgwpAUgl2AKeYEVwwpfgmmSFFeKcHkBNyU8o0QUgKJazChilPKJJ6C9bJv-1JMCz-HbGKC9SHF9AX7AFc-59633g45Wlhnk0ocYp8KHLH3j2YLKax3476KbVduwVUwbfF3f3MG6tVLvVxXm-3r2_J5U1mpcNU0DiPCPXGSoeCts4IoTIV1jEvBsWLYeBqcpDRIgWVocDDcNNwsHDNS0hl4PNX2ZYi62Dh4u7N9SuOZmrCFxJKM0PwE2Tz-ln3Q-xw7k380RvqoTR-16bO2MfBwCuwPTefdGf_3RH8BILhnqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Colossal Strain Tuning of Ferroelectric Transitions in KNbO 3 Thin Films</title><source>Access via Wiley Online Library</source><creator>Hazra, Sankalpa ; Schwaigert, Tobias ; Ross, Aiden ; Lu, Haidong ; Saha, Utkarsh ; Trinquet, Victor ; Akkopru-Akgun, Betul ; Gregory, Benjamin Z ; Mangu, Anudeep ; Sarker, Suchismita ; Kuznetsova, Tatiana ; Sarker, Saugata ; Li, Xin ; Barone, Matthew R ; Xu, Xiaoshan ; Freeland, John W ; Engel-Herbert, Roman ; Lindenberg, Aaron M ; Singer, Andrej ; Trolier-McKinstry, Susan ; Muller, David A ; Rignanese, Gian-Marco ; Salmani-Rezaie, Salva ; Stoica, Vladimir A ; Gruverman, Alexei ; Chen, Long-Qing ; Schlom, Darrell G ; Gopalan, Venkatraman</creator><creatorcontrib>Hazra, Sankalpa ; Schwaigert, Tobias ; Ross, Aiden ; Lu, Haidong ; Saha, Utkarsh ; Trinquet, Victor ; Akkopru-Akgun, Betul ; Gregory, Benjamin Z ; Mangu, Anudeep ; Sarker, Suchismita ; Kuznetsova, Tatiana ; Sarker, Saugata ; Li, Xin ; Barone, Matthew R ; Xu, Xiaoshan ; Freeland, John W ; Engel-Herbert, Roman ; Lindenberg, Aaron M ; Singer, Andrej ; Trolier-McKinstry, Susan ; Muller, David A ; Rignanese, Gian-Marco ; Salmani-Rezaie, Salva ; Stoica, Vladimir A ; Gruverman, Alexei ; Chen, Long-Qing ; Schlom, Darrell G ; Gopalan, Venkatraman</creatorcontrib><description>Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO
thin films grown by sub-oxide molecular beam epitaxy is demonstrated. While bulk KNbO
exhibits three ferroelectric transitions and a Curie temperature (T
) of ≈676 K, phase-field modeling predicts that a biaxial strain of as little as -0.6% pushes its T
> 975 K, its decomposition temperature in air, and for -1.4% strain, to T
> 1325 K, its melting point. Furthermore, a strain of -1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature-dependent second harmonic generation measurements, synchrotron-based X-ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (P
), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead-free system, but with properties comparable or superior to lead-based systems, make it an attractive candidate for applications ranging from high-temperature ferroelectric memory to cryogenic temperature quantum computing.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202408664</identifier><identifier>PMID: 39533481</identifier><language>eng</language><publisher>Germany: Wiley Blackwell (John Wiley & Sons)</publisher><ispartof>Advanced materials (Weinheim), 2024-11, p.e2408664</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c891-bbd1025e2d840fecdc629136cd458651941ae3fd833f8618fb1fa5ab5a7d4a883</cites><orcidid>0000-0002-9349-8391 ; 0000-0003-3359-3781 ; 0000-0003-0492-2750 ; 0000-0003-3085-2207 ; 0000-0002-2734-7819 ; 0000-0003-4129-0473 ; 0009-0001-8195-6172 ; 0000-0003-4814-5308 ; 0000-0003-3317-9134 ; 0000-0003-2493-6113 ; 0000-0001-6866-3677 ; 0000-0002-1422-1205 ; 0000-0002-9126-8058 ; 0000-0003-0580-0229 ; 0000-0002-2965-9242 ; 0000-0003-1221-181X ; 000000031221181X ; 0000000330852207 ; 0000000348145308 ; 0000000227347819 ; 0000000333593781 ; 0000000293498391 ; 0009000181956172 ; 0000000324936113 ; 0000000214221205 ; 0000000305800229 ; 0000000229659242 ; 0000000341290473 ; 0000000168663677 ; 0000000333179134 ; 0000000291268058 ; 0000000304922750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39533481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2478182$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hazra, Sankalpa</creatorcontrib><creatorcontrib>Schwaigert, Tobias</creatorcontrib><creatorcontrib>Ross, Aiden</creatorcontrib><creatorcontrib>Lu, Haidong</creatorcontrib><creatorcontrib>Saha, Utkarsh</creatorcontrib><creatorcontrib>Trinquet, Victor</creatorcontrib><creatorcontrib>Akkopru-Akgun, Betul</creatorcontrib><creatorcontrib>Gregory, Benjamin Z</creatorcontrib><creatorcontrib>Mangu, Anudeep</creatorcontrib><creatorcontrib>Sarker, Suchismita</creatorcontrib><creatorcontrib>Kuznetsova, Tatiana</creatorcontrib><creatorcontrib>Sarker, Saugata</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Barone, Matthew R</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Freeland, John W</creatorcontrib><creatorcontrib>Engel-Herbert, Roman</creatorcontrib><creatorcontrib>Lindenberg, Aaron M</creatorcontrib><creatorcontrib>Singer, Andrej</creatorcontrib><creatorcontrib>Trolier-McKinstry, Susan</creatorcontrib><creatorcontrib>Muller, David A</creatorcontrib><creatorcontrib>Rignanese, Gian-Marco</creatorcontrib><creatorcontrib>Salmani-Rezaie, Salva</creatorcontrib><creatorcontrib>Stoica, Vladimir A</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><creatorcontrib>Schlom, Darrell G</creatorcontrib><creatorcontrib>Gopalan, Venkatraman</creatorcontrib><title>Colossal Strain Tuning of Ferroelectric Transitions in KNbO 3 Thin Films</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO
thin films grown by sub-oxide molecular beam epitaxy is demonstrated. While bulk KNbO
exhibits three ferroelectric transitions and a Curie temperature (T
) of ≈676 K, phase-field modeling predicts that a biaxial strain of as little as -0.6% pushes its T
> 975 K, its decomposition temperature in air, and for -1.4% strain, to T
> 1325 K, its melting point. Furthermore, a strain of -1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature-dependent second harmonic generation measurements, synchrotron-based X-ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (P
), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead-free system, but with properties comparable or superior to lead-based systems, make it an attractive candidate for applications ranging from high-temperature ferroelectric memory to cryogenic temperature quantum computing.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAURi0EoqWwMiKLPcXv2iOqKEVUdCC75fhBjRKnstOBf0-qQqd7h_N9uvcAcI_RHCNEnozrzJwgwpAUgl2AKeYEVwwpfgmmSFFeKcHkBNyU8o0QUgKJazChilPKJJ6C9bJv-1JMCz-HbGKC9SHF9AX7AFc-59633g45Wlhnk0ocYp8KHLH3j2YLKax3476KbVduwVUwbfF3f3MG6tVLvVxXm-3r2_J5U1mpcNU0DiPCPXGSoeCts4IoTIV1jEvBsWLYeBqcpDRIgWVocDDcNNwsHDNS0hl4PNX2ZYi62Dh4u7N9SuOZmrCFxJKM0PwE2Tz-ln3Q-xw7k380RvqoTR-16bO2MfBwCuwPTefdGf_3RH8BILhnqQ</recordid><startdate>20241112</startdate><enddate>20241112</enddate><creator>Hazra, Sankalpa</creator><creator>Schwaigert, Tobias</creator><creator>Ross, Aiden</creator><creator>Lu, Haidong</creator><creator>Saha, Utkarsh</creator><creator>Trinquet, Victor</creator><creator>Akkopru-Akgun, Betul</creator><creator>Gregory, Benjamin Z</creator><creator>Mangu, Anudeep</creator><creator>Sarker, Suchismita</creator><creator>Kuznetsova, Tatiana</creator><creator>Sarker, Saugata</creator><creator>Li, Xin</creator><creator>Barone, Matthew R</creator><creator>Xu, Xiaoshan</creator><creator>Freeland, John W</creator><creator>Engel-Herbert, Roman</creator><creator>Lindenberg, Aaron M</creator><creator>Singer, Andrej</creator><creator>Trolier-McKinstry, Susan</creator><creator>Muller, David A</creator><creator>Rignanese, Gian-Marco</creator><creator>Salmani-Rezaie, Salva</creator><creator>Stoica, Vladimir A</creator><creator>Gruverman, Alexei</creator><creator>Chen, Long-Qing</creator><creator>Schlom, Darrell G</creator><creator>Gopalan, Venkatraman</creator><general>Wiley Blackwell (John Wiley & Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9349-8391</orcidid><orcidid>https://orcid.org/0000-0003-3359-3781</orcidid><orcidid>https://orcid.org/0000-0003-0492-2750</orcidid><orcidid>https://orcid.org/0000-0003-3085-2207</orcidid><orcidid>https://orcid.org/0000-0002-2734-7819</orcidid><orcidid>https://orcid.org/0000-0003-4129-0473</orcidid><orcidid>https://orcid.org/0009-0001-8195-6172</orcidid><orcidid>https://orcid.org/0000-0003-4814-5308</orcidid><orcidid>https://orcid.org/0000-0003-3317-9134</orcidid><orcidid>https://orcid.org/0000-0003-2493-6113</orcidid><orcidid>https://orcid.org/0000-0001-6866-3677</orcidid><orcidid>https://orcid.org/0000-0002-1422-1205</orcidid><orcidid>https://orcid.org/0000-0002-9126-8058</orcidid><orcidid>https://orcid.org/0000-0003-0580-0229</orcidid><orcidid>https://orcid.org/0000-0002-2965-9242</orcidid><orcidid>https://orcid.org/0000-0003-1221-181X</orcidid><orcidid>https://orcid.org/000000031221181X</orcidid><orcidid>https://orcid.org/0000000330852207</orcidid><orcidid>https://orcid.org/0000000348145308</orcidid><orcidid>https://orcid.org/0000000227347819</orcidid><orcidid>https://orcid.org/0000000333593781</orcidid><orcidid>https://orcid.org/0000000293498391</orcidid><orcidid>https://orcid.org/0009000181956172</orcidid><orcidid>https://orcid.org/0000000324936113</orcidid><orcidid>https://orcid.org/0000000214221205</orcidid><orcidid>https://orcid.org/0000000305800229</orcidid><orcidid>https://orcid.org/0000000229659242</orcidid><orcidid>https://orcid.org/0000000341290473</orcidid><orcidid>https://orcid.org/0000000168663677</orcidid><orcidid>https://orcid.org/0000000333179134</orcidid><orcidid>https://orcid.org/0000000291268058</orcidid><orcidid>https://orcid.org/0000000304922750</orcidid></search><sort><creationdate>20241112</creationdate><title>Colossal Strain Tuning of Ferroelectric Transitions in KNbO 3 Thin Films</title><author>Hazra, Sankalpa ; Schwaigert, Tobias ; Ross, Aiden ; Lu, Haidong ; Saha, Utkarsh ; Trinquet, Victor ; Akkopru-Akgun, Betul ; Gregory, Benjamin Z ; Mangu, Anudeep ; Sarker, Suchismita ; Kuznetsova, Tatiana ; Sarker, Saugata ; Li, Xin ; Barone, Matthew R ; Xu, Xiaoshan ; Freeland, John W ; Engel-Herbert, Roman ; Lindenberg, Aaron M ; Singer, Andrej ; Trolier-McKinstry, Susan ; Muller, David A ; Rignanese, Gian-Marco ; Salmani-Rezaie, Salva ; Stoica, Vladimir A ; Gruverman, Alexei ; Chen, Long-Qing ; Schlom, Darrell G ; Gopalan, Venkatraman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c891-bbd1025e2d840fecdc629136cd458651941ae3fd833f8618fb1fa5ab5a7d4a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hazra, Sankalpa</creatorcontrib><creatorcontrib>Schwaigert, Tobias</creatorcontrib><creatorcontrib>Ross, Aiden</creatorcontrib><creatorcontrib>Lu, Haidong</creatorcontrib><creatorcontrib>Saha, Utkarsh</creatorcontrib><creatorcontrib>Trinquet, Victor</creatorcontrib><creatorcontrib>Akkopru-Akgun, Betul</creatorcontrib><creatorcontrib>Gregory, Benjamin Z</creatorcontrib><creatorcontrib>Mangu, Anudeep</creatorcontrib><creatorcontrib>Sarker, Suchismita</creatorcontrib><creatorcontrib>Kuznetsova, Tatiana</creatorcontrib><creatorcontrib>Sarker, Saugata</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Barone, Matthew R</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Freeland, John W</creatorcontrib><creatorcontrib>Engel-Herbert, Roman</creatorcontrib><creatorcontrib>Lindenberg, Aaron M</creatorcontrib><creatorcontrib>Singer, Andrej</creatorcontrib><creatorcontrib>Trolier-McKinstry, Susan</creatorcontrib><creatorcontrib>Muller, David A</creatorcontrib><creatorcontrib>Rignanese, Gian-Marco</creatorcontrib><creatorcontrib>Salmani-Rezaie, Salva</creatorcontrib><creatorcontrib>Stoica, Vladimir A</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><creatorcontrib>Schlom, Darrell G</creatorcontrib><creatorcontrib>Gopalan, Venkatraman</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazra, Sankalpa</au><au>Schwaigert, Tobias</au><au>Ross, Aiden</au><au>Lu, Haidong</au><au>Saha, Utkarsh</au><au>Trinquet, Victor</au><au>Akkopru-Akgun, Betul</au><au>Gregory, Benjamin Z</au><au>Mangu, Anudeep</au><au>Sarker, Suchismita</au><au>Kuznetsova, Tatiana</au><au>Sarker, Saugata</au><au>Li, Xin</au><au>Barone, Matthew R</au><au>Xu, Xiaoshan</au><au>Freeland, John W</au><au>Engel-Herbert, Roman</au><au>Lindenberg, Aaron M</au><au>Singer, Andrej</au><au>Trolier-McKinstry, Susan</au><au>Muller, David A</au><au>Rignanese, Gian-Marco</au><au>Salmani-Rezaie, Salva</au><au>Stoica, Vladimir A</au><au>Gruverman, Alexei</au><au>Chen, Long-Qing</au><au>Schlom, Darrell G</au><au>Gopalan, Venkatraman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colossal Strain Tuning of Ferroelectric Transitions in KNbO 3 Thin Films</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-11-12</date><risdate>2024</risdate><spage>e2408664</spage><pages>e2408664-</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO
thin films grown by sub-oxide molecular beam epitaxy is demonstrated. While bulk KNbO
exhibits three ferroelectric transitions and a Curie temperature (T
) of ≈676 K, phase-field modeling predicts that a biaxial strain of as little as -0.6% pushes its T
> 975 K, its decomposition temperature in air, and for -1.4% strain, to T
> 1325 K, its melting point. Furthermore, a strain of -1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature-dependent second harmonic generation measurements, synchrotron-based X-ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (P
), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead-free system, but with properties comparable or superior to lead-based systems, make it an attractive candidate for applications ranging from high-temperature ferroelectric memory to cryogenic temperature quantum computing.</abstract><cop>Germany</cop><pub>Wiley Blackwell (John Wiley & Sons)</pub><pmid>39533481</pmid><doi>10.1002/adma.202408664</doi><orcidid>https://orcid.org/0000-0002-9349-8391</orcidid><orcidid>https://orcid.org/0000-0003-3359-3781</orcidid><orcidid>https://orcid.org/0000-0003-0492-2750</orcidid><orcidid>https://orcid.org/0000-0003-3085-2207</orcidid><orcidid>https://orcid.org/0000-0002-2734-7819</orcidid><orcidid>https://orcid.org/0000-0003-4129-0473</orcidid><orcidid>https://orcid.org/0009-0001-8195-6172</orcidid><orcidid>https://orcid.org/0000-0003-4814-5308</orcidid><orcidid>https://orcid.org/0000-0003-3317-9134</orcidid><orcidid>https://orcid.org/0000-0003-2493-6113</orcidid><orcidid>https://orcid.org/0000-0001-6866-3677</orcidid><orcidid>https://orcid.org/0000-0002-1422-1205</orcidid><orcidid>https://orcid.org/0000-0002-9126-8058</orcidid><orcidid>https://orcid.org/0000-0003-0580-0229</orcidid><orcidid>https://orcid.org/0000-0002-2965-9242</orcidid><orcidid>https://orcid.org/0000-0003-1221-181X</orcidid><orcidid>https://orcid.org/000000031221181X</orcidid><orcidid>https://orcid.org/0000000330852207</orcidid><orcidid>https://orcid.org/0000000348145308</orcidid><orcidid>https://orcid.org/0000000227347819</orcidid><orcidid>https://orcid.org/0000000333593781</orcidid><orcidid>https://orcid.org/0000000293498391</orcidid><orcidid>https://orcid.org/0009000181956172</orcidid><orcidid>https://orcid.org/0000000324936113</orcidid><orcidid>https://orcid.org/0000000214221205</orcidid><orcidid>https://orcid.org/0000000305800229</orcidid><orcidid>https://orcid.org/0000000229659242</orcidid><orcidid>https://orcid.org/0000000341290473</orcidid><orcidid>https://orcid.org/0000000168663677</orcidid><orcidid>https://orcid.org/0000000333179134</orcidid><orcidid>https://orcid.org/0000000291268058</orcidid><orcidid>https://orcid.org/0000000304922750</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-11, p.e2408664 |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_2478182 |
source | Access via Wiley Online Library |
title | Colossal Strain Tuning of Ferroelectric Transitions in KNbO 3 Thin Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colossal%20Strain%20Tuning%20of%20Ferroelectric%20Transitions%20in%20KNbO%203%20Thin%20Films&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hazra,%20Sankalpa&rft.date=2024-11-12&rft.spage=e2408664&rft.pages=e2408664-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202408664&rft_dat=%3Cpubmed_osti_%3E39533481%3C/pubmed_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39533481&rfr_iscdi=true |