Scalable Multiphysics Block Preconditioning for Low Mach Number Compressible Resistive MHD with Application to Magnetic Confinement Fusion
This study investigates multiphysics block preconditioners that are critical in devising scalable Newton–Krylov iterative solvers for longer time-scale fully implicit fluid plasma models. The specific model of interest is the visco-resistive, low Mach number, compressible magnetohydrodynamics (MHD)...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2024-10, Vol.46 (5), p.S170-S201 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S201 |
---|---|
container_issue | 5 |
container_start_page | S170 |
container_title | SIAM journal on scientific computing |
container_volume | 46 |
creator | Ohm, Peter Bonilla, Jesus Phillips, Edward Shadid, John N. Crockatt, Michael Tuminaro, Ray S. Hu, Jonathan Tang, Xian-Zhu |
description | This study investigates multiphysics block preconditioners that are critical in devising scalable Newton–Krylov iterative solvers for longer time-scale fully implicit fluid plasma models. The specific model of interest is the visco-resistive, low Mach number, compressible magnetohydrodynamics (MHD) model. This model describes the dynamics of conducting fluids in the presence of electromagnetic fields and can be used to study aspects of astrophysical phenomena, important science and technology applications, and basic plasma physics. The specific application of interest that motivates this study is the macroscopic simulation of longer time-scale stability and disruptions of magnetic confinement fusion devices, specifically the ITER Tokamak. The computational solution of the governing balance equations for mass, momentum, heat transfer, and magnetic induction for resistive MHD systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena as well as the significant range of time and length scales that the interactions of these physical mechanisms produce. To handle the range of time and spatial scales of interest, a fully implicit unstructured variational multiscale finite element formulation is employed. For the scalable solution of the Newton linearized systems, fully coupled block preconditioners are designed to leverage algebraic multigrid subsolves. In conclusion, results are presented for the strong and weak scaling of the method as well as the robustness of these techniques for a large range of Lundquist numbers. |
doi_str_mv | 10.1137/23M1582667 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2478091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1137_23M1582667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-ecd64c8f30c01e02d1b1795c17b78ba58975b4fe1b1f7731992b7a88fdb949c43</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRSMEEqWw4QsslkgBOy_bSyiUIrWAeKyjeOI0hsSObJeqv8BX46hIrGY0c-_RzI2ic4KvCEnpdZKuSM6SoqAH0YRgnseUcHo49kUWs4Tmx9GJc58YkyLjyST6eYOqq0Qn0WrTeTW0O6fAodvOwBd6sRKMrpVXRiu9Ro2xaGm2aFVBi542vZAWzUw_WOmcGhmv0inn1XegLe7QVvkW3QxDp6AaEcibYF1r6RUEn26Ulr3UHs03LqxPo6Om6pw8-6vT6GN-_z5bxMvnh8fZzTIGklEfS6iLDFiTYsBE4qQmglCeA6GCMlHljNNcZI0M44bSlHCeCFox1tSCZxyydBpd7LkmnFo6UF5CG_7UEnyZZJRhToLoci8Ca5yzsikHq_rK7kqCyzHq8j_q9Be_W3K8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scalable Multiphysics Block Preconditioning for Low Mach Number Compressible Resistive MHD with Application to Magnetic Confinement Fusion</title><source>SIAM Journals Online</source><creator>Ohm, Peter ; Bonilla, Jesus ; Phillips, Edward ; Shadid, John N. ; Crockatt, Michael ; Tuminaro, Ray S. ; Hu, Jonathan ; Tang, Xian-Zhu</creator><creatorcontrib>Ohm, Peter ; Bonilla, Jesus ; Phillips, Edward ; Shadid, John N. ; Crockatt, Michael ; Tuminaro, Ray S. ; Hu, Jonathan ; Tang, Xian-Zhu ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>This study investigates multiphysics block preconditioners that are critical in devising scalable Newton–Krylov iterative solvers for longer time-scale fully implicit fluid plasma models. The specific model of interest is the visco-resistive, low Mach number, compressible magnetohydrodynamics (MHD) model. This model describes the dynamics of conducting fluids in the presence of electromagnetic fields and can be used to study aspects of astrophysical phenomena, important science and technology applications, and basic plasma physics. The specific application of interest that motivates this study is the macroscopic simulation of longer time-scale stability and disruptions of magnetic confinement fusion devices, specifically the ITER Tokamak. The computational solution of the governing balance equations for mass, momentum, heat transfer, and magnetic induction for resistive MHD systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena as well as the significant range of time and length scales that the interactions of these physical mechanisms produce. To handle the range of time and spatial scales of interest, a fully implicit unstructured variational multiscale finite element formulation is employed. For the scalable solution of the Newton linearized systems, fully coupled block preconditioners are designed to leverage algebraic multigrid subsolves. In conclusion, results are presented for the strong and weak scaling of the method as well as the robustness of these techniques for a large range of Lundquist numbers.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/23M1582667</identifier><language>eng</language><publisher>United States: Society for Industrial and Applied Mathematics (SIAM)</publisher><subject>block preconditioning ; fully implicit ; large-scale parallel ; magnetic fusion energy ; magnetohydrodynamics ; mathematics ; multilevel preconditioner ; stabilized finite element</subject><ispartof>SIAM journal on scientific computing, 2024-10, Vol.46 (5), p.S170-S201</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-ecd64c8f30c01e02d1b1795c17b78ba58975b4fe1b1f7731992b7a88fdb949c43</cites><orcidid>0000-0002-4803-4416 ; 0000-0003-4636-3619 ; 0000000248034416 ; 0000000271210852 ; 0000000346363619 ; 0000000240366643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3171,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2478091$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohm, Peter</creatorcontrib><creatorcontrib>Bonilla, Jesus</creatorcontrib><creatorcontrib>Phillips, Edward</creatorcontrib><creatorcontrib>Shadid, John N.</creatorcontrib><creatorcontrib>Crockatt, Michael</creatorcontrib><creatorcontrib>Tuminaro, Ray S.</creatorcontrib><creatorcontrib>Hu, Jonathan</creatorcontrib><creatorcontrib>Tang, Xian-Zhu</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Scalable Multiphysics Block Preconditioning for Low Mach Number Compressible Resistive MHD with Application to Magnetic Confinement Fusion</title><title>SIAM journal on scientific computing</title><description>This study investigates multiphysics block preconditioners that are critical in devising scalable Newton–Krylov iterative solvers for longer time-scale fully implicit fluid plasma models. The specific model of interest is the visco-resistive, low Mach number, compressible magnetohydrodynamics (MHD) model. This model describes the dynamics of conducting fluids in the presence of electromagnetic fields and can be used to study aspects of astrophysical phenomena, important science and technology applications, and basic plasma physics. The specific application of interest that motivates this study is the macroscopic simulation of longer time-scale stability and disruptions of magnetic confinement fusion devices, specifically the ITER Tokamak. The computational solution of the governing balance equations for mass, momentum, heat transfer, and magnetic induction for resistive MHD systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena as well as the significant range of time and length scales that the interactions of these physical mechanisms produce. To handle the range of time and spatial scales of interest, a fully implicit unstructured variational multiscale finite element formulation is employed. For the scalable solution of the Newton linearized systems, fully coupled block preconditioners are designed to leverage algebraic multigrid subsolves. In conclusion, results are presented for the strong and weak scaling of the method as well as the robustness of these techniques for a large range of Lundquist numbers.</description><subject>block preconditioning</subject><subject>fully implicit</subject><subject>large-scale parallel</subject><subject>magnetic fusion energy</subject><subject>magnetohydrodynamics</subject><subject>mathematics</subject><subject>multilevel preconditioner</subject><subject>stabilized finite element</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRSMEEqWw4QsslkgBOy_bSyiUIrWAeKyjeOI0hsSObJeqv8BX46hIrGY0c-_RzI2ic4KvCEnpdZKuSM6SoqAH0YRgnseUcHo49kUWs4Tmx9GJc58YkyLjyST6eYOqq0Qn0WrTeTW0O6fAodvOwBd6sRKMrpVXRiu9Ro2xaGm2aFVBi542vZAWzUw_WOmcGhmv0inn1XegLe7QVvkW3QxDp6AaEcibYF1r6RUEn26Ulr3UHs03LqxPo6Om6pw8-6vT6GN-_z5bxMvnh8fZzTIGklEfS6iLDFiTYsBE4qQmglCeA6GCMlHljNNcZI0M44bSlHCeCFox1tSCZxyydBpd7LkmnFo6UF5CG_7UEnyZZJRhToLoci8Ca5yzsikHq_rK7kqCyzHq8j_q9Be_W3K8</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Ohm, Peter</creator><creator>Bonilla, Jesus</creator><creator>Phillips, Edward</creator><creator>Shadid, John N.</creator><creator>Crockatt, Michael</creator><creator>Tuminaro, Ray S.</creator><creator>Hu, Jonathan</creator><creator>Tang, Xian-Zhu</creator><general>Society for Industrial and Applied Mathematics (SIAM)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4803-4416</orcidid><orcidid>https://orcid.org/0000-0003-4636-3619</orcidid><orcidid>https://orcid.org/0000000248034416</orcidid><orcidid>https://orcid.org/0000000271210852</orcidid><orcidid>https://orcid.org/0000000346363619</orcidid><orcidid>https://orcid.org/0000000240366643</orcidid></search><sort><creationdate>20241031</creationdate><title>Scalable Multiphysics Block Preconditioning for Low Mach Number Compressible Resistive MHD with Application to Magnetic Confinement Fusion</title><author>Ohm, Peter ; Bonilla, Jesus ; Phillips, Edward ; Shadid, John N. ; Crockatt, Michael ; Tuminaro, Ray S. ; Hu, Jonathan ; Tang, Xian-Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-ecd64c8f30c01e02d1b1795c17b78ba58975b4fe1b1f7731992b7a88fdb949c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>block preconditioning</topic><topic>fully implicit</topic><topic>large-scale parallel</topic><topic>magnetic fusion energy</topic><topic>magnetohydrodynamics</topic><topic>mathematics</topic><topic>multilevel preconditioner</topic><topic>stabilized finite element</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohm, Peter</creatorcontrib><creatorcontrib>Bonilla, Jesus</creatorcontrib><creatorcontrib>Phillips, Edward</creatorcontrib><creatorcontrib>Shadid, John N.</creatorcontrib><creatorcontrib>Crockatt, Michael</creatorcontrib><creatorcontrib>Tuminaro, Ray S.</creatorcontrib><creatorcontrib>Hu, Jonathan</creatorcontrib><creatorcontrib>Tang, Xian-Zhu</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohm, Peter</au><au>Bonilla, Jesus</au><au>Phillips, Edward</au><au>Shadid, John N.</au><au>Crockatt, Michael</au><au>Tuminaro, Ray S.</au><au>Hu, Jonathan</au><au>Tang, Xian-Zhu</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Multiphysics Block Preconditioning for Low Mach Number Compressible Resistive MHD with Application to Magnetic Confinement Fusion</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2024-10-31</date><risdate>2024</risdate><volume>46</volume><issue>5</issue><spage>S170</spage><epage>S201</epage><pages>S170-S201</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>This study investigates multiphysics block preconditioners that are critical in devising scalable Newton–Krylov iterative solvers for longer time-scale fully implicit fluid plasma models. The specific model of interest is the visco-resistive, low Mach number, compressible magnetohydrodynamics (MHD) model. This model describes the dynamics of conducting fluids in the presence of electromagnetic fields and can be used to study aspects of astrophysical phenomena, important science and technology applications, and basic plasma physics. The specific application of interest that motivates this study is the macroscopic simulation of longer time-scale stability and disruptions of magnetic confinement fusion devices, specifically the ITER Tokamak. The computational solution of the governing balance equations for mass, momentum, heat transfer, and magnetic induction for resistive MHD systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena as well as the significant range of time and length scales that the interactions of these physical mechanisms produce. To handle the range of time and spatial scales of interest, a fully implicit unstructured variational multiscale finite element formulation is employed. For the scalable solution of the Newton linearized systems, fully coupled block preconditioners are designed to leverage algebraic multigrid subsolves. In conclusion, results are presented for the strong and weak scaling of the method as well as the robustness of these techniques for a large range of Lundquist numbers.</abstract><cop>United States</cop><pub>Society for Industrial and Applied Mathematics (SIAM)</pub><doi>10.1137/23M1582667</doi><orcidid>https://orcid.org/0000-0002-4803-4416</orcidid><orcidid>https://orcid.org/0000-0003-4636-3619</orcidid><orcidid>https://orcid.org/0000000248034416</orcidid><orcidid>https://orcid.org/0000000271210852</orcidid><orcidid>https://orcid.org/0000000346363619</orcidid><orcidid>https://orcid.org/0000000240366643</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2024-10, Vol.46 (5), p.S170-S201 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_osti_scitechconnect_2478091 |
source | SIAM Journals Online |
subjects | block preconditioning fully implicit large-scale parallel magnetic fusion energy magnetohydrodynamics mathematics multilevel preconditioner stabilized finite element |
title | Scalable Multiphysics Block Preconditioning for Low Mach Number Compressible Resistive MHD with Application to Magnetic Confinement Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Multiphysics%20Block%20Preconditioning%20for%20Low%20Mach%20Number%20Compressible%20Resistive%20MHD%20with%20Application%20to%20Magnetic%20Confinement%20Fusion&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Ohm,%20Peter&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-10-31&rft.volume=46&rft.issue=5&rft.spage=S170&rft.epage=S201&rft.pages=S170-S201&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/23M1582667&rft_dat=%3Ccrossref_osti_%3E10_1137_23M1582667%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |