Friction stir processing on a strontium modified, thin-wall, vacuum-assisted high-pressure die-cast Aural-5 alloy to improve tensile and fatigue performance

Here, this study explores the application of friction stir processing (FSP) to enhance the material properties of Sr-modified Aural-5 alloy, with a focus on improved tensile and fatigue properties. Aural-5 is a well-known vacuum-assisted high-pressure die-cast (HPDC) Al-Si7-Mg alloy used in the auto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2024-07, Vol.912
Hauptverfasser: Samanta, Avik, Das, Hrishikesh, Royer, Jacqueline I., Lall, Amrita, Grant, Glenn J., Jana, Saumyadeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 912
creator Samanta, Avik
Das, Hrishikesh
Royer, Jacqueline I.
Lall, Amrita
Grant, Glenn J.
Jana, Saumyadeep
description Here, this study explores the application of friction stir processing (FSP) to enhance the material properties of Sr-modified Aural-5 alloy, with a focus on improved tensile and fatigue properties. Aural-5 is a well-known vacuum-assisted high-pressure die-cast (HPDC) Al-Si7-Mg alloy used in the automotive industry to reduce vehicle weight, enhance fuel efficiency, and lower carbon emissions. This alloy modifies its material chemistry with Sr for fine fibrous networks of eutectic silicon and manganese (Mn) to reduce die soldering. It has significantly less iron (Fe) content resulting in the elimination of detrimental needle-shaped Fe-bearing ß-phase intermetallic and improving ductility. The initial microstructure of as-received HPDC Aural-5 exhibits shrinkage porosity in the middle section, a dendritic microstructure with fibrous Al-Si eutectic colonies, a shear-band structure beneath the die-wall, large dendritic externally solidified crystals (ESCs), needle-shaped Mg2Si phase and significant second-phase particulates. Some of those microstructural features, such as porosity, ESCs, needle-shaped Mg2Si phase, and large second-phase particles, serve as initiation sites for cracks under mechanical loading, resulting in adverse effects on tensile properties, particularly ductility. FSP effectively transforms the microstructure into a wrought configuration with uniform particle distribution by eliminating porosity and disintegrating dendrites, eutectic colonies, ESCs, second-phase particles, and shear-band structures. FSP-driven microstructure modification enhances yield strength and tensile ductility by ~30% and ~35%, respectively. The fatigue life of the material in a bending mode configuration (stress ratio R = 0.1) after FSP exhibits enhancements ranging from 2.0 to 3.9 times that of the original HPDC Aural-5 alloy, depending on the applied stress level.
doi_str_mv 10.1016/j.msea.2024.146977
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2477608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477608</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24776083</originalsourceid><addsrcrecordid>eNqNjktOxDAQRL0AieFzAVYt1uNgZ_IhS4QYcQD2o5bTSXoU25E_g7gLh8ULDsCqpFK9qhLiUatKK909nysbCata1U2lm27o-yuxU0OtZauGw424jfGslNKNanfi5xjYJPYOYuIAW_CGYmQ3Q7GwmMG7xNmC9SNPTOMe0sJOfuG67uGCJmcrsRAx0QgLz4vcQmnIgWBkkgZjgtcccJUtFMZ_Q_LAtgxdCBK5yCsBuhEmTDxngo3C5INFZ-heXE-4Rnr40zvxdHz_fPuQvpw9RcOJzGK8c2TSqW76vlMvh3-FfgFvP2Fe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Friction stir processing on a strontium modified, thin-wall, vacuum-assisted high-pressure die-cast Aural-5 alloy to improve tensile and fatigue performance</title><source>Elsevier ScienceDirect Journals</source><creator>Samanta, Avik ; Das, Hrishikesh ; Royer, Jacqueline I. ; Lall, Amrita ; Grant, Glenn J. ; Jana, Saumyadeep</creator><creatorcontrib>Samanta, Avik ; Das, Hrishikesh ; Royer, Jacqueline I. ; Lall, Amrita ; Grant, Glenn J. ; Jana, Saumyadeep ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Here, this study explores the application of friction stir processing (FSP) to enhance the material properties of Sr-modified Aural-5 alloy, with a focus on improved tensile and fatigue properties. Aural-5 is a well-known vacuum-assisted high-pressure die-cast (HPDC) Al-Si7-Mg alloy used in the automotive industry to reduce vehicle weight, enhance fuel efficiency, and lower carbon emissions. This alloy modifies its material chemistry with Sr for fine fibrous networks of eutectic silicon and manganese (Mn) to reduce die soldering. It has significantly less iron (Fe) content resulting in the elimination of detrimental needle-shaped Fe-bearing ß-phase intermetallic and improving ductility. The initial microstructure of as-received HPDC Aural-5 exhibits shrinkage porosity in the middle section, a dendritic microstructure with fibrous Al-Si eutectic colonies, a shear-band structure beneath the die-wall, large dendritic externally solidified crystals (ESCs), needle-shaped Mg2Si phase and significant second-phase particulates. Some of those microstructural features, such as porosity, ESCs, needle-shaped Mg2Si phase, and large second-phase particles, serve as initiation sites for cracks under mechanical loading, resulting in adverse effects on tensile properties, particularly ductility. FSP effectively transforms the microstructure into a wrought configuration with uniform particle distribution by eliminating porosity and disintegrating dendrites, eutectic colonies, ESCs, second-phase particles, and shear-band structures. FSP-driven microstructure modification enhances yield strength and tensile ductility by ~30% and ~35%, respectively. The fatigue life of the material in a bending mode configuration (stress ratio R = 0.1) after FSP exhibits enhancements ranging from 2.0 to 3.9 times that of the original HPDC Aural-5 alloy, depending on the applied stress level.</description><identifier>ISSN: 0921-5093</identifier><identifier>DOI: 10.1016/j.msea.2024.146977</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Aural alloy ; ENGINEERING ; Fatigue properties ; Friction stir processing ; Grain refinement ; High pressure die casting ; MATERIALS SCIENCE ; Tensile properties</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2024-07, Vol.912</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000163567299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2477608$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Samanta, Avik</creatorcontrib><creatorcontrib>Das, Hrishikesh</creatorcontrib><creatorcontrib>Royer, Jacqueline I.</creatorcontrib><creatorcontrib>Lall, Amrita</creatorcontrib><creatorcontrib>Grant, Glenn J.</creatorcontrib><creatorcontrib>Jana, Saumyadeep</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Friction stir processing on a strontium modified, thin-wall, vacuum-assisted high-pressure die-cast Aural-5 alloy to improve tensile and fatigue performance</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Here, this study explores the application of friction stir processing (FSP) to enhance the material properties of Sr-modified Aural-5 alloy, with a focus on improved tensile and fatigue properties. Aural-5 is a well-known vacuum-assisted high-pressure die-cast (HPDC) Al-Si7-Mg alloy used in the automotive industry to reduce vehicle weight, enhance fuel efficiency, and lower carbon emissions. This alloy modifies its material chemistry with Sr for fine fibrous networks of eutectic silicon and manganese (Mn) to reduce die soldering. It has significantly less iron (Fe) content resulting in the elimination of detrimental needle-shaped Fe-bearing ß-phase intermetallic and improving ductility. The initial microstructure of as-received HPDC Aural-5 exhibits shrinkage porosity in the middle section, a dendritic microstructure with fibrous Al-Si eutectic colonies, a shear-band structure beneath the die-wall, large dendritic externally solidified crystals (ESCs), needle-shaped Mg2Si phase and significant second-phase particulates. Some of those microstructural features, such as porosity, ESCs, needle-shaped Mg2Si phase, and large second-phase particles, serve as initiation sites for cracks under mechanical loading, resulting in adverse effects on tensile properties, particularly ductility. FSP effectively transforms the microstructure into a wrought configuration with uniform particle distribution by eliminating porosity and disintegrating dendrites, eutectic colonies, ESCs, second-phase particles, and shear-band structures. FSP-driven microstructure modification enhances yield strength and tensile ductility by ~30% and ~35%, respectively. The fatigue life of the material in a bending mode configuration (stress ratio R = 0.1) after FSP exhibits enhancements ranging from 2.0 to 3.9 times that of the original HPDC Aural-5 alloy, depending on the applied stress level.</description><subject>Aural alloy</subject><subject>ENGINEERING</subject><subject>Fatigue properties</subject><subject>Friction stir processing</subject><subject>Grain refinement</subject><subject>High pressure die casting</subject><subject>MATERIALS SCIENCE</subject><subject>Tensile properties</subject><issn>0921-5093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNjktOxDAQRL0AieFzAVYt1uNgZ_IhS4QYcQD2o5bTSXoU25E_g7gLh8ULDsCqpFK9qhLiUatKK909nysbCata1U2lm27o-yuxU0OtZauGw424jfGslNKNanfi5xjYJPYOYuIAW_CGYmQ3Q7GwmMG7xNmC9SNPTOMe0sJOfuG67uGCJmcrsRAx0QgLz4vcQmnIgWBkkgZjgtcccJUtFMZ_Q_LAtgxdCBK5yCsBuhEmTDxngo3C5INFZ-heXE-4Rnr40zvxdHz_fPuQvpw9RcOJzGK8c2TSqW76vlMvh3-FfgFvP2Fe</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Samanta, Avik</creator><creator>Das, Hrishikesh</creator><creator>Royer, Jacqueline I.</creator><creator>Lall, Amrita</creator><creator>Grant, Glenn J.</creator><creator>Jana, Saumyadeep</creator><general>Elsevier</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000163567299</orcidid></search><sort><creationdate>20240717</creationdate><title>Friction stir processing on a strontium modified, thin-wall, vacuum-assisted high-pressure die-cast Aural-5 alloy to improve tensile and fatigue performance</title><author>Samanta, Avik ; Das, Hrishikesh ; Royer, Jacqueline I. ; Lall, Amrita ; Grant, Glenn J. ; Jana, Saumyadeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24776083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aural alloy</topic><topic>ENGINEERING</topic><topic>Fatigue properties</topic><topic>Friction stir processing</topic><topic>Grain refinement</topic><topic>High pressure die casting</topic><topic>MATERIALS SCIENCE</topic><topic>Tensile properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samanta, Avik</creatorcontrib><creatorcontrib>Das, Hrishikesh</creatorcontrib><creatorcontrib>Royer, Jacqueline I.</creatorcontrib><creatorcontrib>Lall, Amrita</creatorcontrib><creatorcontrib>Grant, Glenn J.</creatorcontrib><creatorcontrib>Jana, Saumyadeep</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samanta, Avik</au><au>Das, Hrishikesh</au><au>Royer, Jacqueline I.</au><au>Lall, Amrita</au><au>Grant, Glenn J.</au><au>Jana, Saumyadeep</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Friction stir processing on a strontium modified, thin-wall, vacuum-assisted high-pressure die-cast Aural-5 alloy to improve tensile and fatigue performance</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2024-07-17</date><risdate>2024</risdate><volume>912</volume><issn>0921-5093</issn><abstract>Here, this study explores the application of friction stir processing (FSP) to enhance the material properties of Sr-modified Aural-5 alloy, with a focus on improved tensile and fatigue properties. Aural-5 is a well-known vacuum-assisted high-pressure die-cast (HPDC) Al-Si7-Mg alloy used in the automotive industry to reduce vehicle weight, enhance fuel efficiency, and lower carbon emissions. This alloy modifies its material chemistry with Sr for fine fibrous networks of eutectic silicon and manganese (Mn) to reduce die soldering. It has significantly less iron (Fe) content resulting in the elimination of detrimental needle-shaped Fe-bearing ß-phase intermetallic and improving ductility. The initial microstructure of as-received HPDC Aural-5 exhibits shrinkage porosity in the middle section, a dendritic microstructure with fibrous Al-Si eutectic colonies, a shear-band structure beneath the die-wall, large dendritic externally solidified crystals (ESCs), needle-shaped Mg2Si phase and significant second-phase particulates. Some of those microstructural features, such as porosity, ESCs, needle-shaped Mg2Si phase, and large second-phase particles, serve as initiation sites for cracks under mechanical loading, resulting in adverse effects on tensile properties, particularly ductility. FSP effectively transforms the microstructure into a wrought configuration with uniform particle distribution by eliminating porosity and disintegrating dendrites, eutectic colonies, ESCs, second-phase particles, and shear-band structures. FSP-driven microstructure modification enhances yield strength and tensile ductility by ~30% and ~35%, respectively. The fatigue life of the material in a bending mode configuration (stress ratio R = 0.1) after FSP exhibits enhancements ranging from 2.0 to 3.9 times that of the original HPDC Aural-5 alloy, depending on the applied stress level.</abstract><cop>United States</cop><pub>Elsevier</pub><doi>10.1016/j.msea.2024.146977</doi><orcidid>https://orcid.org/0000000163567299</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2024-07, Vol.912
issn 0921-5093
language eng
recordid cdi_osti_scitechconnect_2477608
source Elsevier ScienceDirect Journals
subjects Aural alloy
ENGINEERING
Fatigue properties
Friction stir processing
Grain refinement
High pressure die casting
MATERIALS SCIENCE
Tensile properties
title Friction stir processing on a strontium modified, thin-wall, vacuum-assisted high-pressure die-cast Aural-5 alloy to improve tensile and fatigue performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Friction%20stir%20processing%20on%20a%20strontium%20modified,%20thin-wall,%20vacuum-assisted%20high-pressure%20die-cast%20Aural-5%20alloy%20to%20improve%20tensile%20and%20fatigue%20performance&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Samanta,%20Avik&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-07-17&rft.volume=912&rft.issn=0921-5093&rft_id=info:doi/10.1016/j.msea.2024.146977&rft_dat=%3Costi%3E2477608%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true