Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem

The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2024-05, Vol.10 (22)
Hauptverfasser: Shaydulin, Ruslan, Li, Changhao, Chakrabarti, Shouvanik, DeCross, Matthew, Herman, Dylan, Kumar, Niraj, Larson, Jeffrey, Lykov, Danylo, Minssen, Pierre, Sun, Yue, Alexeev, Yuri, Dreiling, Joan M., Gaebler, John P., Gatterman, Thomas M., Gerber, Justin A., Gilmore, Kevin, Gresh, Dan, Hewitt, Nathan, Horst, Chandler V., Hu, Shaohan, Johansen, Jacob, Matheny, Mitchell, Mengle, Tanner, Mills, Michael, Moses, Steven A., Neyenhuis, Brian, Siegfried, Peter, Yalovetzky, Romina, Pistoia, Marco
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Science advances
container_volume 10
creator Shaydulin, Ruslan
Li, Changhao
Chakrabarti, Shouvanik
DeCross, Matthew
Herman, Dylan
Kumar, Niraj
Larson, Jeffrey
Lykov, Danylo
Minssen, Pierre
Sun, Yue
Alexeev, Yuri
Dreiling, Joan M.
Gaebler, John P.
Gatterman, Thomas M.
Gerber, Justin A.
Gilmore, Kevin
Gresh, Dan
Hewitt, Nathan
Horst, Chandler V.
Hu, Shaohan
Johansen, Jacob
Matheny, Mitchell
Mengle, Tanner
Mills, Michael
Moses, Steven A.
Neyenhuis, Brian
Siegfried, Peter
Yalovetzky, Romina
Pistoia, Marco
description The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for moderately sized instances. We perform noiseless simulations with up to 40 qubits and observe that the runtime of QAOA with fixed parameters scales better than branch-and-bound solvers, which are the state-of-the-art exact solvers for LABS. The combination of QAOA with quantum minimum finding gives the best empirical scaling of any algorithm for the LABS problem. We demonstrate experimental progress in executing QAOA for the LABS problem using an algorithm-specific error detection scheme on Quantinuum trapped-ion processors. Our results provide evidence for the utility of QAOA as an algorithmic component that enables quantum speedups.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2477194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2477194</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24771943</originalsourceid><addsrcrecordid>eNqNjM0KgkAUhYcoKMp3uLQP1DRrHUUP0D5u46g35secq1RP3wQtWrY6P5zvjMQsXRf5Ks2z7fjHT0Xk_S2O4yTbbPJkNxP9YaBSWanAVeAlarI1YDmgZawVVK4DbhTc-1D0BrBtO_cggxyAlsnQC5mcBdS164gbA58AUqP3FO70E8hyh5LxqhUEOohZiEmF2qvoq3OxPB7O-9PKeaaLl8RKNtJZqyRf0qwokl22_mv0Bmw8T_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Shaydulin, Ruslan ; Li, Changhao ; Chakrabarti, Shouvanik ; DeCross, Matthew ; Herman, Dylan ; Kumar, Niraj ; Larson, Jeffrey ; Lykov, Danylo ; Minssen, Pierre ; Sun, Yue ; Alexeev, Yuri ; Dreiling, Joan M. ; Gaebler, John P. ; Gatterman, Thomas M. ; Gerber, Justin A. ; Gilmore, Kevin ; Gresh, Dan ; Hewitt, Nathan ; Horst, Chandler V. ; Hu, Shaohan ; Johansen, Jacob ; Matheny, Mitchell ; Mengle, Tanner ; Mills, Michael ; Moses, Steven A. ; Neyenhuis, Brian ; Siegfried, Peter ; Yalovetzky, Romina ; Pistoia, Marco</creator><creatorcontrib>Shaydulin, Ruslan ; Li, Changhao ; Chakrabarti, Shouvanik ; DeCross, Matthew ; Herman, Dylan ; Kumar, Niraj ; Larson, Jeffrey ; Lykov, Danylo ; Minssen, Pierre ; Sun, Yue ; Alexeev, Yuri ; Dreiling, Joan M. ; Gaebler, John P. ; Gatterman, Thomas M. ; Gerber, Justin A. ; Gilmore, Kevin ; Gresh, Dan ; Hewitt, Nathan ; Horst, Chandler V. ; Hu, Shaohan ; Johansen, Jacob ; Matheny, Mitchell ; Mengle, Tanner ; Mills, Michael ; Moses, Steven A. ; Neyenhuis, Brian ; Siegfried, Peter ; Yalovetzky, Romina ; Pistoia, Marco ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for moderately sized instances. We perform noiseless simulations with up to 40 qubits and observe that the runtime of QAOA with fixed parameters scales better than branch-and-bound solvers, which are the state-of-the-art exact solvers for LABS. The combination of QAOA with quantum minimum finding gives the best empirical scaling of any algorithm for the LABS problem. We demonstrate experimental progress in executing QAOA for the LABS problem using an algorithm-specific error detection scheme on Quantinuum trapped-ion processors. Our results provide evidence for the utility of QAOA as an algorithmic component that enables quantum speedups.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><language>eng</language><publisher>United States: AAAS</publisher><ispartof>Science advances, 2024-05, Vol.10 (22)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000294598140 ; 0000000287217848 ; 000000020756164X ; 0000000183972072 ; 0000000231404935 ; 0000000303616962 ; 0009000031624615 ; 0000000325604129 ; 0000000150662254 ; 0000000286572848 ; 0000000229792633 ; 0009000752087338 ; 0000000199242082 ; 0000000228772665 ; 0000000230195887 ; 0000000190021128 ; 0009000463384221 ; 000000019226203X ; 0000000298653338 ; 0000000282307000 ; 0000000210210795 ; 0000000226167410 ; 0000000201452899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2477194$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaydulin, Ruslan</creatorcontrib><creatorcontrib>Li, Changhao</creatorcontrib><creatorcontrib>Chakrabarti, Shouvanik</creatorcontrib><creatorcontrib>DeCross, Matthew</creatorcontrib><creatorcontrib>Herman, Dylan</creatorcontrib><creatorcontrib>Kumar, Niraj</creatorcontrib><creatorcontrib>Larson, Jeffrey</creatorcontrib><creatorcontrib>Lykov, Danylo</creatorcontrib><creatorcontrib>Minssen, Pierre</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Alexeev, Yuri</creatorcontrib><creatorcontrib>Dreiling, Joan M.</creatorcontrib><creatorcontrib>Gaebler, John P.</creatorcontrib><creatorcontrib>Gatterman, Thomas M.</creatorcontrib><creatorcontrib>Gerber, Justin A.</creatorcontrib><creatorcontrib>Gilmore, Kevin</creatorcontrib><creatorcontrib>Gresh, Dan</creatorcontrib><creatorcontrib>Hewitt, Nathan</creatorcontrib><creatorcontrib>Horst, Chandler V.</creatorcontrib><creatorcontrib>Hu, Shaohan</creatorcontrib><creatorcontrib>Johansen, Jacob</creatorcontrib><creatorcontrib>Matheny, Mitchell</creatorcontrib><creatorcontrib>Mengle, Tanner</creatorcontrib><creatorcontrib>Mills, Michael</creatorcontrib><creatorcontrib>Moses, Steven A.</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Siegfried, Peter</creatorcontrib><creatorcontrib>Yalovetzky, Romina</creatorcontrib><creatorcontrib>Pistoia, Marco</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem</title><title>Science advances</title><description>The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for moderately sized instances. We perform noiseless simulations with up to 40 qubits and observe that the runtime of QAOA with fixed parameters scales better than branch-and-bound solvers, which are the state-of-the-art exact solvers for LABS. The combination of QAOA with quantum minimum finding gives the best empirical scaling of any algorithm for the LABS problem. We demonstrate experimental progress in executing QAOA for the LABS problem using an algorithm-specific error detection scheme on Quantinuum trapped-ion processors. Our results provide evidence for the utility of QAOA as an algorithmic component that enables quantum speedups.</description><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNjM0KgkAUhYcoKMp3uLQP1DRrHUUP0D5u46g35secq1RP3wQtWrY6P5zvjMQsXRf5Ks2z7fjHT0Xk_S2O4yTbbPJkNxP9YaBSWanAVeAlarI1YDmgZawVVK4DbhTc-1D0BrBtO_cggxyAlsnQC5mcBdS164gbA58AUqP3FO70E8hyh5LxqhUEOohZiEmF2qvoq3OxPB7O-9PKeaaLl8RKNtJZqyRf0qwokl22_mv0Bmw8T_g</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>Shaydulin, Ruslan</creator><creator>Li, Changhao</creator><creator>Chakrabarti, Shouvanik</creator><creator>DeCross, Matthew</creator><creator>Herman, Dylan</creator><creator>Kumar, Niraj</creator><creator>Larson, Jeffrey</creator><creator>Lykov, Danylo</creator><creator>Minssen, Pierre</creator><creator>Sun, Yue</creator><creator>Alexeev, Yuri</creator><creator>Dreiling, Joan M.</creator><creator>Gaebler, John P.</creator><creator>Gatterman, Thomas M.</creator><creator>Gerber, Justin A.</creator><creator>Gilmore, Kevin</creator><creator>Gresh, Dan</creator><creator>Hewitt, Nathan</creator><creator>Horst, Chandler V.</creator><creator>Hu, Shaohan</creator><creator>Johansen, Jacob</creator><creator>Matheny, Mitchell</creator><creator>Mengle, Tanner</creator><creator>Mills, Michael</creator><creator>Moses, Steven A.</creator><creator>Neyenhuis, Brian</creator><creator>Siegfried, Peter</creator><creator>Yalovetzky, Romina</creator><creator>Pistoia, Marco</creator><general>AAAS</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000294598140</orcidid><orcidid>https://orcid.org/0000000287217848</orcidid><orcidid>https://orcid.org/000000020756164X</orcidid><orcidid>https://orcid.org/0000000183972072</orcidid><orcidid>https://orcid.org/0000000231404935</orcidid><orcidid>https://orcid.org/0000000303616962</orcidid><orcidid>https://orcid.org/0009000031624615</orcidid><orcidid>https://orcid.org/0000000325604129</orcidid><orcidid>https://orcid.org/0000000150662254</orcidid><orcidid>https://orcid.org/0000000286572848</orcidid><orcidid>https://orcid.org/0000000229792633</orcidid><orcidid>https://orcid.org/0009000752087338</orcidid><orcidid>https://orcid.org/0000000199242082</orcidid><orcidid>https://orcid.org/0000000228772665</orcidid><orcidid>https://orcid.org/0000000230195887</orcidid><orcidid>https://orcid.org/0000000190021128</orcidid><orcidid>https://orcid.org/0009000463384221</orcidid><orcidid>https://orcid.org/000000019226203X</orcidid><orcidid>https://orcid.org/0000000298653338</orcidid><orcidid>https://orcid.org/0000000282307000</orcidid><orcidid>https://orcid.org/0000000210210795</orcidid><orcidid>https://orcid.org/0000000226167410</orcidid><orcidid>https://orcid.org/0000000201452899</orcidid></search><sort><creationdate>20240531</creationdate><title>Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem</title><author>Shaydulin, Ruslan ; Li, Changhao ; Chakrabarti, Shouvanik ; DeCross, Matthew ; Herman, Dylan ; Kumar, Niraj ; Larson, Jeffrey ; Lykov, Danylo ; Minssen, Pierre ; Sun, Yue ; Alexeev, Yuri ; Dreiling, Joan M. ; Gaebler, John P. ; Gatterman, Thomas M. ; Gerber, Justin A. ; Gilmore, Kevin ; Gresh, Dan ; Hewitt, Nathan ; Horst, Chandler V. ; Hu, Shaohan ; Johansen, Jacob ; Matheny, Mitchell ; Mengle, Tanner ; Mills, Michael ; Moses, Steven A. ; Neyenhuis, Brian ; Siegfried, Peter ; Yalovetzky, Romina ; Pistoia, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24771943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaydulin, Ruslan</creatorcontrib><creatorcontrib>Li, Changhao</creatorcontrib><creatorcontrib>Chakrabarti, Shouvanik</creatorcontrib><creatorcontrib>DeCross, Matthew</creatorcontrib><creatorcontrib>Herman, Dylan</creatorcontrib><creatorcontrib>Kumar, Niraj</creatorcontrib><creatorcontrib>Larson, Jeffrey</creatorcontrib><creatorcontrib>Lykov, Danylo</creatorcontrib><creatorcontrib>Minssen, Pierre</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Alexeev, Yuri</creatorcontrib><creatorcontrib>Dreiling, Joan M.</creatorcontrib><creatorcontrib>Gaebler, John P.</creatorcontrib><creatorcontrib>Gatterman, Thomas M.</creatorcontrib><creatorcontrib>Gerber, Justin A.</creatorcontrib><creatorcontrib>Gilmore, Kevin</creatorcontrib><creatorcontrib>Gresh, Dan</creatorcontrib><creatorcontrib>Hewitt, Nathan</creatorcontrib><creatorcontrib>Horst, Chandler V.</creatorcontrib><creatorcontrib>Hu, Shaohan</creatorcontrib><creatorcontrib>Johansen, Jacob</creatorcontrib><creatorcontrib>Matheny, Mitchell</creatorcontrib><creatorcontrib>Mengle, Tanner</creatorcontrib><creatorcontrib>Mills, Michael</creatorcontrib><creatorcontrib>Moses, Steven A.</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Siegfried, Peter</creatorcontrib><creatorcontrib>Yalovetzky, Romina</creatorcontrib><creatorcontrib>Pistoia, Marco</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaydulin, Ruslan</au><au>Li, Changhao</au><au>Chakrabarti, Shouvanik</au><au>DeCross, Matthew</au><au>Herman, Dylan</au><au>Kumar, Niraj</au><au>Larson, Jeffrey</au><au>Lykov, Danylo</au><au>Minssen, Pierre</au><au>Sun, Yue</au><au>Alexeev, Yuri</au><au>Dreiling, Joan M.</au><au>Gaebler, John P.</au><au>Gatterman, Thomas M.</au><au>Gerber, Justin A.</au><au>Gilmore, Kevin</au><au>Gresh, Dan</au><au>Hewitt, Nathan</au><au>Horst, Chandler V.</au><au>Hu, Shaohan</au><au>Johansen, Jacob</au><au>Matheny, Mitchell</au><au>Mengle, Tanner</au><au>Mills, Michael</au><au>Moses, Steven A.</au><au>Neyenhuis, Brian</au><au>Siegfried, Peter</au><au>Yalovetzky, Romina</au><au>Pistoia, Marco</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem</atitle><jtitle>Science advances</jtitle><date>2024-05-31</date><risdate>2024</risdate><volume>10</volume><issue>22</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for moderately sized instances. We perform noiseless simulations with up to 40 qubits and observe that the runtime of QAOA with fixed parameters scales better than branch-and-bound solvers, which are the state-of-the-art exact solvers for LABS. The combination of QAOA with quantum minimum finding gives the best empirical scaling of any algorithm for the LABS problem. We demonstrate experimental progress in executing QAOA for the LABS problem using an algorithm-specific error detection scheme on Quantinuum trapped-ion processors. Our results provide evidence for the utility of QAOA as an algorithmic component that enables quantum speedups.</abstract><cop>United States</cop><pub>AAAS</pub><orcidid>https://orcid.org/0000000294598140</orcidid><orcidid>https://orcid.org/0000000287217848</orcidid><orcidid>https://orcid.org/000000020756164X</orcidid><orcidid>https://orcid.org/0000000183972072</orcidid><orcidid>https://orcid.org/0000000231404935</orcidid><orcidid>https://orcid.org/0000000303616962</orcidid><orcidid>https://orcid.org/0009000031624615</orcidid><orcidid>https://orcid.org/0000000325604129</orcidid><orcidid>https://orcid.org/0000000150662254</orcidid><orcidid>https://orcid.org/0000000286572848</orcidid><orcidid>https://orcid.org/0000000229792633</orcidid><orcidid>https://orcid.org/0009000752087338</orcidid><orcidid>https://orcid.org/0000000199242082</orcidid><orcidid>https://orcid.org/0000000228772665</orcidid><orcidid>https://orcid.org/0000000230195887</orcidid><orcidid>https://orcid.org/0000000190021128</orcidid><orcidid>https://orcid.org/0009000463384221</orcidid><orcidid>https://orcid.org/000000019226203X</orcidid><orcidid>https://orcid.org/0000000298653338</orcidid><orcidid>https://orcid.org/0000000282307000</orcidid><orcidid>https://orcid.org/0000000210210795</orcidid><orcidid>https://orcid.org/0000000226167410</orcidid><orcidid>https://orcid.org/0000000201452899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2024-05, Vol.10 (22)
issn 2375-2548
2375-2548
language eng
recordid cdi_osti_scitechconnect_2477194
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20scaling%20advantage%20for%20the%20quantum%20approximate%20optimization%20algorithm%20on%20a%20classically%20intractable%20problem&rft.jtitle=Science%20advances&rft.au=Shaydulin,%20Ruslan&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2024-05-31&rft.volume=10&rft.issue=22&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/&rft_dat=%3Costi%3E2477194%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true