Real-time signal detection for Cyclotron Radiation Emission Spectroscopy measurements using antenna arrays
Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for precision measurement of the energies of charged particles, which is being developed by the Project 8 Collaboration to measure the neutrino mass using tritium beta-decay spectroscopy. Project 8 seeks to use the CRES technique to mea...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2024-05, Vol.19 (5), p.P05073 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | P05073 |
container_title | Journal of instrumentation |
container_volume | 19 |
creator | Ashtari Esfahani, A. Böser, S. Buzinsky, N. Carmona-Benitez, M.C. Claessens, C. de Viveiros, L. Fertl, M. Formaggio, J.A. Foust, B.T. Gaison, J.K. Grando, M. Hartse, J. Heeger, K.M. Huyan, X. Jones, A.M. Jones, B.J.P. Kazkaz, K. LaRoque, B.H. Li, M. Lindman, A. Marsteller, A. Matthé, C. Mohiuddin, R. Monreal, B. Mucogllava, B. Mueller, R. Negi, A. Nikkel, J.A. Novitski, E. Oblath, N.S. Oueslati, M. Peña, J.I. Pettus, W. Reimann, R. Robertson, R.G.H. Rybka, G. Saldaña, L. Slocum, P.L. Stachurska, J. Sun, Y.-H. Surukuchi, P.T. Tedeschi, J.R. Telles, A.B. Thomas, F. Thorne, L.A. Thümmler, T. Van De Pontseele, W. VanDevender, B.A. Weiss, T.E. Wendler, T. Ziegler, A. |
description | Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for precision measurement of the energies of charged particles, which is being developed by the Project 8 Collaboration to measure the neutrino mass using tritium beta-decay spectroscopy. Project 8 seeks to use the CRES technique to measure the neutrino mass with a sensitivity of 40 meV, requiring a large supply of tritium atoms stored in a multi-cubic meter detector volume. Antenna arrays are one potential technology compatible with an experiment of this scale, but the capability of an antenna-based CRES experiment to measure the neutrino mass depends on the efficiency of the signal detection algorithms. In this paper, we develop efficiency models for three signal detection algorithms and compare them using simulations from a prototype antenna-based CRES experiment as a case-study. The algorithms include a power threshold, a matched filter template bank, and a neural network based machine learning approach, which are analyzed in terms of their average detection efficiency and relative computational cost. It is found that significant improvements in detection efficiency and, therefore, neutrino mass sensitivity are achievable, with only a moderate increase in computation cost, by utilizing either the matched filter or machine learning approach in place of a power threshold, which is the baseline signal detection algorithm used in previous CRES experiments by Project 8. |
doi_str_mv | 10.1088/1748-0221/19/05/P05073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2476674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061277812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-67cc66478b36e2aacb267f773c50a5c73b1e2a5a4345b7c16d480928fc7e026a3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKd_QYLeCXX5aJLuUsb8gIEy9TqkaToz1qQm2UX_vakV9ULwKifnPO_hvG-WnSN4jWBZzhAvyhxijGZoPoN09gQp5OQgm3wPDn_Vx9lJCFsI6ZwWcJJt11ru8mhaDYLZWLkDtY5aReMsaJwHi17tXPTpt5a1kZ_9ZWtCGIrnLpHeBeW6HrRahr3XrbYxgH0wdgOkjdpaCaT3sg-n2VEjd0Gffb3T7PV2-bK4z1ePdw-Lm1WuCCIxZ1wpxgpeVoRpLKWqMOMN50RRKKnipEKpTWVBClpxhVhdlHCOy0ZxDTGTZJpdjHtdiEYEZZKfN-WsTccKXHDGeJGgyxHqvHvf6xDF1u198h8EgQxhzkuEE8VGSiWXwetGdN600vcCQTGEL4ZcxZCrQHMBqRjDT0I8Co3rfjb_K7r6Q7Q1Nl33GxRd3ZAPJy2V4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061277812</pqid></control><display><type>article</type><title>Real-time signal detection for Cyclotron Radiation Emission Spectroscopy measurements using antenna arrays</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ashtari Esfahani, A. ; Böser, S. ; Buzinsky, N. ; Carmona-Benitez, M.C. ; Claessens, C. ; de Viveiros, L. ; Fertl, M. ; Formaggio, J.A. ; Foust, B.T. ; Gaison, J.K. ; Grando, M. ; Hartse, J. ; Heeger, K.M. ; Huyan, X. ; Jones, A.M. ; Jones, B.J.P. ; Kazkaz, K. ; LaRoque, B.H. ; Li, M. ; Lindman, A. ; Marsteller, A. ; Matthé, C. ; Mohiuddin, R. ; Monreal, B. ; Mucogllava, B. ; Mueller, R. ; Negi, A. ; Nikkel, J.A. ; Novitski, E. ; Oblath, N.S. ; Oueslati, M. ; Peña, J.I. ; Pettus, W. ; Reimann, R. ; Robertson, R.G.H. ; Rybka, G. ; Saldaña, L. ; Slocum, P.L. ; Stachurska, J. ; Sun, Y.-H. ; Surukuchi, P.T. ; Tedeschi, J.R. ; Telles, A.B. ; Thomas, F. ; Thorne, L.A. ; Thümmler, T. ; Van De Pontseele, W. ; VanDevender, B.A. ; Weiss, T.E. ; Wendler, T. ; Ziegler, A.</creator><creatorcontrib>Ashtari Esfahani, A. ; Böser, S. ; Buzinsky, N. ; Carmona-Benitez, M.C. ; Claessens, C. ; de Viveiros, L. ; Fertl, M. ; Formaggio, J.A. ; Foust, B.T. ; Gaison, J.K. ; Grando, M. ; Hartse, J. ; Heeger, K.M. ; Huyan, X. ; Jones, A.M. ; Jones, B.J.P. ; Kazkaz, K. ; LaRoque, B.H. ; Li, M. ; Lindman, A. ; Marsteller, A. ; Matthé, C. ; Mohiuddin, R. ; Monreal, B. ; Mucogllava, B. ; Mueller, R. ; Negi, A. ; Nikkel, J.A. ; Novitski, E. ; Oblath, N.S. ; Oueslati, M. ; Peña, J.I. ; Pettus, W. ; Reimann, R. ; Robertson, R.G.H. ; Rybka, G. ; Saldaña, L. ; Slocum, P.L. ; Stachurska, J. ; Sun, Y.-H. ; Surukuchi, P.T. ; Tedeschi, J.R. ; Telles, A.B. ; Thomas, F. ; Thorne, L.A. ; Thümmler, T. ; Van De Pontseele, W. ; VanDevender, B.A. ; Weiss, T.E. ; Wendler, T. ; Ziegler, A. ; The Project 8 collaboration ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for precision measurement of the energies of charged particles, which is being developed by the Project 8 Collaboration to measure the neutrino mass using tritium beta-decay spectroscopy. Project 8 seeks to use the CRES technique to measure the neutrino mass with a sensitivity of 40 meV, requiring a large supply of tritium atoms stored in a multi-cubic meter detector volume. Antenna arrays are one potential technology compatible with an experiment of this scale, but the capability of an antenna-based CRES experiment to measure the neutrino mass depends on the efficiency of the signal detection algorithms. In this paper, we develop efficiency models for three signal detection algorithms and compare them using simulations from a prototype antenna-based CRES experiment as a case-study. The algorithms include a power threshold, a matched filter template bank, and a neural network based machine learning approach, which are analyzed in terms of their average detection efficiency and relative computational cost. It is found that significant improvements in detection efficiency and, therefore, neutrino mass sensitivity are achievable, with only a moderate increase in computation cost, by utilizing either the matched filter or machine learning approach in place of a power threshold, which is the baseline signal detection algorithm used in previous CRES experiments by Project 8.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/19/05/P05073</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Antenna arrays ; Antennas ; Beta decay ; Charged particles ; Computational efficiency ; Computing costs ; Cyclotron radiation ; Cyclotrons ; Efficiency ; Emission spectroscopy ; Machine learning ; Matched filters ; Microwave Antennas ; Neural networks ; Neutrinos ; Radiation ; Sensitivity ; Signal detection ; Spectrometers ; Spectrum analysis ; Template matching ; Trigger algorithms ; Trigger concepts and systems ; Trigger concepts and systems (hardware and software) ; Tritium</subject><ispartof>Journal of instrumentation, 2024-05, Vol.19 (5), p.P05073</ispartof><rights>2024 IOP Publishing Ltd and Sissa Medialab</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c313t-67cc66478b36e2aacb267f773c50a5c73b1e2a5a4345b7c16d480928fc7e026a3</cites><orcidid>0000-0002-9485-3949 ; 0000-0003-2084-1352 ; 0000-0002-4815-6499 ; 0000-0002-0992-7588 ; 0000-0001-8103-7670 ; 0000-0003-3164-2922 ; 0000-0001-9409-7023 ; 0000-0002-2592-2787 ; 0000-0001-8718-0646 ; 0000-0003-3422-3133 ; 0000-0002-3757-9883 ; 0000-0003-4947-7400 ; 0000-0002-4027-3746 ; 0000-0002-3470-7771 ; 0000-0002-1983-8271 ; 0000-0002-4782-8126 ; 0000-0002-7896-9925 ; 0000-0002-6025-602X ; 0000-0002-3796-0086 ; 0000-0003-3400-8986 ; 0000-0002-5326-331X ; 0000-0003-4154-2271 ; 0000-0002-7038-2361 ; 0000-0001-9973-1564 ; 0000-0002-0238-5608 ; 0000-0001-9318-4686 ; 0000-0002-0373-8225 ; 0000-0002-4623-7543 ; 0000-0002-4988-8763 ; 0000-0003-4142-5956 ; 0009-0009-8202-5837 ; 0000-0001-7052-2785 ; 0000-0003-4212-7125 ; 0000-0002-7858-0370 ; 0000-0002-0322-7089 ; 0000-0002-5540-1288 ; 0000-0002-5918-4890 ; 0000-0002-9620-4512 ; 0000-0002-2444-7857 ; 0000-0003-4295-9570 ; 0000-0002-2398-7085 ; 0000-0003-1713-3128 ; 0000-0002-3600-587X ; 0000-0002-1925-2553 ; 0000-0002-1028-8939 ; 0000000294853949 ; 0000000202385608 ; 0000000342959570 ; 0000000341542271 ; 0000000193184686 ; 0000000247828126 ; 0000000246237543 ; 0000000342127125 ; 0000000194097023 ; 000000025326331X ; 0000000341425956 ; 000000026025602X ; 0000000240273746 ; 0000000219252553 ; 0000000219838271 ; 0000000170522785 ; 0000000259184890 ; 0000000270382361 ; 0000000225922787 ; 0000000331642922 ; 0000000255401288 ; 0000000296204512 ; 0000000223987085 ; 0000000237960086 ; 0000000203738225 ; 0000000187180646 ; 0000000224447857 ; 0000000349477400 ; 0000000278580370 ; 0000000209927588 ; 0000000237579883 ; 0000000317133128 ; 0000000203227089 ; 0000000199731564 ; 0000000234707771 ; 0000000334223133 ; 0000000249888763 ; 000000023600587X ; 0000000181037670 ; 0000000278969925 ; 0000000248156499 ; 0000000210288939 ; 0000000320841352 ; 0000000334008986 ; 0009000982025837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-0221/19/05/P05073/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2476674$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashtari Esfahani, A.</creatorcontrib><creatorcontrib>Böser, S.</creatorcontrib><creatorcontrib>Buzinsky, N.</creatorcontrib><creatorcontrib>Carmona-Benitez, M.C.</creatorcontrib><creatorcontrib>Claessens, C.</creatorcontrib><creatorcontrib>de Viveiros, L.</creatorcontrib><creatorcontrib>Fertl, M.</creatorcontrib><creatorcontrib>Formaggio, J.A.</creatorcontrib><creatorcontrib>Foust, B.T.</creatorcontrib><creatorcontrib>Gaison, J.K.</creatorcontrib><creatorcontrib>Grando, M.</creatorcontrib><creatorcontrib>Hartse, J.</creatorcontrib><creatorcontrib>Heeger, K.M.</creatorcontrib><creatorcontrib>Huyan, X.</creatorcontrib><creatorcontrib>Jones, A.M.</creatorcontrib><creatorcontrib>Jones, B.J.P.</creatorcontrib><creatorcontrib>Kazkaz, K.</creatorcontrib><creatorcontrib>LaRoque, B.H.</creatorcontrib><creatorcontrib>Li, M.</creatorcontrib><creatorcontrib>Lindman, A.</creatorcontrib><creatorcontrib>Marsteller, A.</creatorcontrib><creatorcontrib>Matthé, C.</creatorcontrib><creatorcontrib>Mohiuddin, R.</creatorcontrib><creatorcontrib>Monreal, B.</creatorcontrib><creatorcontrib>Mucogllava, B.</creatorcontrib><creatorcontrib>Mueller, R.</creatorcontrib><creatorcontrib>Negi, A.</creatorcontrib><creatorcontrib>Nikkel, J.A.</creatorcontrib><creatorcontrib>Novitski, E.</creatorcontrib><creatorcontrib>Oblath, N.S.</creatorcontrib><creatorcontrib>Oueslati, M.</creatorcontrib><creatorcontrib>Peña, J.I.</creatorcontrib><creatorcontrib>Pettus, W.</creatorcontrib><creatorcontrib>Reimann, R.</creatorcontrib><creatorcontrib>Robertson, R.G.H.</creatorcontrib><creatorcontrib>Rybka, G.</creatorcontrib><creatorcontrib>Saldaña, L.</creatorcontrib><creatorcontrib>Slocum, P.L.</creatorcontrib><creatorcontrib>Stachurska, J.</creatorcontrib><creatorcontrib>Sun, Y.-H.</creatorcontrib><creatorcontrib>Surukuchi, P.T.</creatorcontrib><creatorcontrib>Tedeschi, J.R.</creatorcontrib><creatorcontrib>Telles, A.B.</creatorcontrib><creatorcontrib>Thomas, F.</creatorcontrib><creatorcontrib>Thorne, L.A.</creatorcontrib><creatorcontrib>Thümmler, T.</creatorcontrib><creatorcontrib>Van De Pontseele, W.</creatorcontrib><creatorcontrib>VanDevender, B.A.</creatorcontrib><creatorcontrib>Weiss, T.E.</creatorcontrib><creatorcontrib>Wendler, T.</creatorcontrib><creatorcontrib>Ziegler, A.</creatorcontrib><creatorcontrib>The Project 8 collaboration</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Real-time signal detection for Cyclotron Radiation Emission Spectroscopy measurements using antenna arrays</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for precision measurement of the energies of charged particles, which is being developed by the Project 8 Collaboration to measure the neutrino mass using tritium beta-decay spectroscopy. Project 8 seeks to use the CRES technique to measure the neutrino mass with a sensitivity of 40 meV, requiring a large supply of tritium atoms stored in a multi-cubic meter detector volume. Antenna arrays are one potential technology compatible with an experiment of this scale, but the capability of an antenna-based CRES experiment to measure the neutrino mass depends on the efficiency of the signal detection algorithms. In this paper, we develop efficiency models for three signal detection algorithms and compare them using simulations from a prototype antenna-based CRES experiment as a case-study. The algorithms include a power threshold, a matched filter template bank, and a neural network based machine learning approach, which are analyzed in terms of their average detection efficiency and relative computational cost. It is found that significant improvements in detection efficiency and, therefore, neutrino mass sensitivity are achievable, with only a moderate increase in computation cost, by utilizing either the matched filter or machine learning approach in place of a power threshold, which is the baseline signal detection algorithm used in previous CRES experiments by Project 8.</description><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Beta decay</subject><subject>Charged particles</subject><subject>Computational efficiency</subject><subject>Computing costs</subject><subject>Cyclotron radiation</subject><subject>Cyclotrons</subject><subject>Efficiency</subject><subject>Emission spectroscopy</subject><subject>Machine learning</subject><subject>Matched filters</subject><subject>Microwave Antennas</subject><subject>Neural networks</subject><subject>Neutrinos</subject><subject>Radiation</subject><subject>Sensitivity</subject><subject>Signal detection</subject><subject>Spectrometers</subject><subject>Spectrum analysis</subject><subject>Template matching</subject><subject>Trigger algorithms</subject><subject>Trigger concepts and systems</subject><subject>Trigger concepts and systems (hardware and software)</subject><subject>Tritium</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhosoOKd_QYLeCXX5aJLuUsb8gIEy9TqkaToz1qQm2UX_vakV9ULwKifnPO_hvG-WnSN4jWBZzhAvyhxijGZoPoN09gQp5OQgm3wPDn_Vx9lJCFsI6ZwWcJJt11ru8mhaDYLZWLkDtY5aReMsaJwHi17tXPTpt5a1kZ_9ZWtCGIrnLpHeBeW6HrRahr3XrbYxgH0wdgOkjdpaCaT3sg-n2VEjd0Gffb3T7PV2-bK4z1ePdw-Lm1WuCCIxZ1wpxgpeVoRpLKWqMOMN50RRKKnipEKpTWVBClpxhVhdlHCOy0ZxDTGTZJpdjHtdiEYEZZKfN-WsTccKXHDGeJGgyxHqvHvf6xDF1u198h8EgQxhzkuEE8VGSiWXwetGdN600vcCQTGEL4ZcxZCrQHMBqRjDT0I8Co3rfjb_K7r6Q7Q1Nl33GxRd3ZAPJy2V4g</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Ashtari Esfahani, A.</creator><creator>Böser, S.</creator><creator>Buzinsky, N.</creator><creator>Carmona-Benitez, M.C.</creator><creator>Claessens, C.</creator><creator>de Viveiros, L.</creator><creator>Fertl, M.</creator><creator>Formaggio, J.A.</creator><creator>Foust, B.T.</creator><creator>Gaison, J.K.</creator><creator>Grando, M.</creator><creator>Hartse, J.</creator><creator>Heeger, K.M.</creator><creator>Huyan, X.</creator><creator>Jones, A.M.</creator><creator>Jones, B.J.P.</creator><creator>Kazkaz, K.</creator><creator>LaRoque, B.H.</creator><creator>Li, M.</creator><creator>Lindman, A.</creator><creator>Marsteller, A.</creator><creator>Matthé, C.</creator><creator>Mohiuddin, R.</creator><creator>Monreal, B.</creator><creator>Mucogllava, B.</creator><creator>Mueller, R.</creator><creator>Negi, A.</creator><creator>Nikkel, J.A.</creator><creator>Novitski, E.</creator><creator>Oblath, N.S.</creator><creator>Oueslati, M.</creator><creator>Peña, J.I.</creator><creator>Pettus, W.</creator><creator>Reimann, R.</creator><creator>Robertson, R.G.H.</creator><creator>Rybka, G.</creator><creator>Saldaña, L.</creator><creator>Slocum, P.L.</creator><creator>Stachurska, J.</creator><creator>Sun, Y.-H.</creator><creator>Surukuchi, P.T.</creator><creator>Tedeschi, J.R.</creator><creator>Telles, A.B.</creator><creator>Thomas, F.</creator><creator>Thorne, L.A.</creator><creator>Thümmler, T.</creator><creator>Van De Pontseele, W.</creator><creator>VanDevender, B.A.</creator><creator>Weiss, T.E.</creator><creator>Wendler, T.</creator><creator>Ziegler, A.</creator><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9485-3949</orcidid><orcidid>https://orcid.org/0000-0003-2084-1352</orcidid><orcidid>https://orcid.org/0000-0002-4815-6499</orcidid><orcidid>https://orcid.org/0000-0002-0992-7588</orcidid><orcidid>https://orcid.org/0000-0001-8103-7670</orcidid><orcidid>https://orcid.org/0000-0003-3164-2922</orcidid><orcidid>https://orcid.org/0000-0001-9409-7023</orcidid><orcidid>https://orcid.org/0000-0002-2592-2787</orcidid><orcidid>https://orcid.org/0000-0001-8718-0646</orcidid><orcidid>https://orcid.org/0000-0003-3422-3133</orcidid><orcidid>https://orcid.org/0000-0002-3757-9883</orcidid><orcidid>https://orcid.org/0000-0003-4947-7400</orcidid><orcidid>https://orcid.org/0000-0002-4027-3746</orcidid><orcidid>https://orcid.org/0000-0002-3470-7771</orcidid><orcidid>https://orcid.org/0000-0002-1983-8271</orcidid><orcidid>https://orcid.org/0000-0002-4782-8126</orcidid><orcidid>https://orcid.org/0000-0002-7896-9925</orcidid><orcidid>https://orcid.org/0000-0002-6025-602X</orcidid><orcidid>https://orcid.org/0000-0002-3796-0086</orcidid><orcidid>https://orcid.org/0000-0003-3400-8986</orcidid><orcidid>https://orcid.org/0000-0002-5326-331X</orcidid><orcidid>https://orcid.org/0000-0003-4154-2271</orcidid><orcidid>https://orcid.org/0000-0002-7038-2361</orcidid><orcidid>https://orcid.org/0000-0001-9973-1564</orcidid><orcidid>https://orcid.org/0000-0002-0238-5608</orcidid><orcidid>https://orcid.org/0000-0001-9318-4686</orcidid><orcidid>https://orcid.org/0000-0002-0373-8225</orcidid><orcidid>https://orcid.org/0000-0002-4623-7543</orcidid><orcidid>https://orcid.org/0000-0002-4988-8763</orcidid><orcidid>https://orcid.org/0000-0003-4142-5956</orcidid><orcidid>https://orcid.org/0009-0009-8202-5837</orcidid><orcidid>https://orcid.org/0000-0001-7052-2785</orcidid><orcidid>https://orcid.org/0000-0003-4212-7125</orcidid><orcidid>https://orcid.org/0000-0002-7858-0370</orcidid><orcidid>https://orcid.org/0000-0002-0322-7089</orcidid><orcidid>https://orcid.org/0000-0002-5540-1288</orcidid><orcidid>https://orcid.org/0000-0002-5918-4890</orcidid><orcidid>https://orcid.org/0000-0002-9620-4512</orcidid><orcidid>https://orcid.org/0000-0002-2444-7857</orcidid><orcidid>https://orcid.org/0000-0003-4295-9570</orcidid><orcidid>https://orcid.org/0000-0002-2398-7085</orcidid><orcidid>https://orcid.org/0000-0003-1713-3128</orcidid><orcidid>https://orcid.org/0000-0002-3600-587X</orcidid><orcidid>https://orcid.org/0000-0002-1925-2553</orcidid><orcidid>https://orcid.org/0000-0002-1028-8939</orcidid><orcidid>https://orcid.org/0000000294853949</orcidid><orcidid>https://orcid.org/0000000202385608</orcidid><orcidid>https://orcid.org/0000000342959570</orcidid><orcidid>https://orcid.org/0000000341542271</orcidid><orcidid>https://orcid.org/0000000193184686</orcidid><orcidid>https://orcid.org/0000000247828126</orcidid><orcidid>https://orcid.org/0000000246237543</orcidid><orcidid>https://orcid.org/0000000342127125</orcidid><orcidid>https://orcid.org/0000000194097023</orcidid><orcidid>https://orcid.org/000000025326331X</orcidid><orcidid>https://orcid.org/0000000341425956</orcidid><orcidid>https://orcid.org/000000026025602X</orcidid><orcidid>https://orcid.org/0000000240273746</orcidid><orcidid>https://orcid.org/0000000219252553</orcidid><orcidid>https://orcid.org/0000000219838271</orcidid><orcidid>https://orcid.org/0000000170522785</orcidid><orcidid>https://orcid.org/0000000259184890</orcidid><orcidid>https://orcid.org/0000000270382361</orcidid><orcidid>https://orcid.org/0000000225922787</orcidid><orcidid>https://orcid.org/0000000331642922</orcidid><orcidid>https://orcid.org/0000000255401288</orcidid><orcidid>https://orcid.org/0000000296204512</orcidid><orcidid>https://orcid.org/0000000223987085</orcidid><orcidid>https://orcid.org/0000000237960086</orcidid><orcidid>https://orcid.org/0000000203738225</orcidid><orcidid>https://orcid.org/0000000187180646</orcidid><orcidid>https://orcid.org/0000000224447857</orcidid><orcidid>https://orcid.org/0000000349477400</orcidid><orcidid>https://orcid.org/0000000278580370</orcidid><orcidid>https://orcid.org/0000000209927588</orcidid><orcidid>https://orcid.org/0000000237579883</orcidid><orcidid>https://orcid.org/0000000317133128</orcidid><orcidid>https://orcid.org/0000000203227089</orcidid><orcidid>https://orcid.org/0000000199731564</orcidid><orcidid>https://orcid.org/0000000234707771</orcidid><orcidid>https://orcid.org/0000000334223133</orcidid><orcidid>https://orcid.org/0000000249888763</orcidid><orcidid>https://orcid.org/000000023600587X</orcidid><orcidid>https://orcid.org/0000000181037670</orcidid><orcidid>https://orcid.org/0000000278969925</orcidid><orcidid>https://orcid.org/0000000248156499</orcidid><orcidid>https://orcid.org/0000000210288939</orcidid><orcidid>https://orcid.org/0000000320841352</orcidid><orcidid>https://orcid.org/0000000334008986</orcidid><orcidid>https://orcid.org/0009000982025837</orcidid></search><sort><creationdate>20240501</creationdate><title>Real-time signal detection for Cyclotron Radiation Emission Spectroscopy measurements using antenna arrays</title><author>Ashtari Esfahani, A. ; Böser, S. ; Buzinsky, N. ; Carmona-Benitez, M.C. ; Claessens, C. ; de Viveiros, L. ; Fertl, M. ; Formaggio, J.A. ; Foust, B.T. ; Gaison, J.K. ; Grando, M. ; Hartse, J. ; Heeger, K.M. ; Huyan, X. ; Jones, A.M. ; Jones, B.J.P. ; Kazkaz, K. ; LaRoque, B.H. ; Li, M. ; Lindman, A. ; Marsteller, A. ; Matthé, C. ; Mohiuddin, R. ; Monreal, B. ; Mucogllava, B. ; Mueller, R. ; Negi, A. ; Nikkel, J.A. ; Novitski, E. ; Oblath, N.S. ; Oueslati, M. ; Peña, J.I. ; Pettus, W. ; Reimann, R. ; Robertson, R.G.H. ; Rybka, G. ; Saldaña, L. ; Slocum, P.L. ; Stachurska, J. ; Sun, Y.-H. ; Surukuchi, P.T. ; Tedeschi, J.R. ; Telles, A.B. ; Thomas, F. ; Thorne, L.A. ; Thümmler, T. ; Van De Pontseele, W. ; VanDevender, B.A. ; Weiss, T.E. ; Wendler, T. ; Ziegler, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-67cc66478b36e2aacb267f773c50a5c73b1e2a5a4345b7c16d480928fc7e026a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Beta decay</topic><topic>Charged particles</topic><topic>Computational efficiency</topic><topic>Computing costs</topic><topic>Cyclotron radiation</topic><topic>Cyclotrons</topic><topic>Efficiency</topic><topic>Emission spectroscopy</topic><topic>Machine learning</topic><topic>Matched filters</topic><topic>Microwave Antennas</topic><topic>Neural networks</topic><topic>Neutrinos</topic><topic>Radiation</topic><topic>Sensitivity</topic><topic>Signal detection</topic><topic>Spectrometers</topic><topic>Spectrum analysis</topic><topic>Template matching</topic><topic>Trigger algorithms</topic><topic>Trigger concepts and systems</topic><topic>Trigger concepts and systems (hardware and software)</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashtari Esfahani, A.</creatorcontrib><creatorcontrib>Böser, S.</creatorcontrib><creatorcontrib>Buzinsky, N.</creatorcontrib><creatorcontrib>Carmona-Benitez, M.C.</creatorcontrib><creatorcontrib>Claessens, C.</creatorcontrib><creatorcontrib>de Viveiros, L.</creatorcontrib><creatorcontrib>Fertl, M.</creatorcontrib><creatorcontrib>Formaggio, J.A.</creatorcontrib><creatorcontrib>Foust, B.T.</creatorcontrib><creatorcontrib>Gaison, J.K.</creatorcontrib><creatorcontrib>Grando, M.</creatorcontrib><creatorcontrib>Hartse, J.</creatorcontrib><creatorcontrib>Heeger, K.M.</creatorcontrib><creatorcontrib>Huyan, X.</creatorcontrib><creatorcontrib>Jones, A.M.</creatorcontrib><creatorcontrib>Jones, B.J.P.</creatorcontrib><creatorcontrib>Kazkaz, K.</creatorcontrib><creatorcontrib>LaRoque, B.H.</creatorcontrib><creatorcontrib>Li, M.</creatorcontrib><creatorcontrib>Lindman, A.</creatorcontrib><creatorcontrib>Marsteller, A.</creatorcontrib><creatorcontrib>Matthé, C.</creatorcontrib><creatorcontrib>Mohiuddin, R.</creatorcontrib><creatorcontrib>Monreal, B.</creatorcontrib><creatorcontrib>Mucogllava, B.</creatorcontrib><creatorcontrib>Mueller, R.</creatorcontrib><creatorcontrib>Negi, A.</creatorcontrib><creatorcontrib>Nikkel, J.A.</creatorcontrib><creatorcontrib>Novitski, E.</creatorcontrib><creatorcontrib>Oblath, N.S.</creatorcontrib><creatorcontrib>Oueslati, M.</creatorcontrib><creatorcontrib>Peña, J.I.</creatorcontrib><creatorcontrib>Pettus, W.</creatorcontrib><creatorcontrib>Reimann, R.</creatorcontrib><creatorcontrib>Robertson, R.G.H.</creatorcontrib><creatorcontrib>Rybka, G.</creatorcontrib><creatorcontrib>Saldaña, L.</creatorcontrib><creatorcontrib>Slocum, P.L.</creatorcontrib><creatorcontrib>Stachurska, J.</creatorcontrib><creatorcontrib>Sun, Y.-H.</creatorcontrib><creatorcontrib>Surukuchi, P.T.</creatorcontrib><creatorcontrib>Tedeschi, J.R.</creatorcontrib><creatorcontrib>Telles, A.B.</creatorcontrib><creatorcontrib>Thomas, F.</creatorcontrib><creatorcontrib>Thorne, L.A.</creatorcontrib><creatorcontrib>Thümmler, T.</creatorcontrib><creatorcontrib>Van De Pontseele, W.</creatorcontrib><creatorcontrib>VanDevender, B.A.</creatorcontrib><creatorcontrib>Weiss, T.E.</creatorcontrib><creatorcontrib>Wendler, T.</creatorcontrib><creatorcontrib>Ziegler, A.</creatorcontrib><creatorcontrib>The Project 8 collaboration</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashtari Esfahani, A.</au><au>Böser, S.</au><au>Buzinsky, N.</au><au>Carmona-Benitez, M.C.</au><au>Claessens, C.</au><au>de Viveiros, L.</au><au>Fertl, M.</au><au>Formaggio, J.A.</au><au>Foust, B.T.</au><au>Gaison, J.K.</au><au>Grando, M.</au><au>Hartse, J.</au><au>Heeger, K.M.</au><au>Huyan, X.</au><au>Jones, A.M.</au><au>Jones, B.J.P.</au><au>Kazkaz, K.</au><au>LaRoque, B.H.</au><au>Li, M.</au><au>Lindman, A.</au><au>Marsteller, A.</au><au>Matthé, C.</au><au>Mohiuddin, R.</au><au>Monreal, B.</au><au>Mucogllava, B.</au><au>Mueller, R.</au><au>Negi, A.</au><au>Nikkel, J.A.</au><au>Novitski, E.</au><au>Oblath, N.S.</au><au>Oueslati, M.</au><au>Peña, J.I.</au><au>Pettus, W.</au><au>Reimann, R.</au><au>Robertson, R.G.H.</au><au>Rybka, G.</au><au>Saldaña, L.</au><au>Slocum, P.L.</au><au>Stachurska, J.</au><au>Sun, Y.-H.</au><au>Surukuchi, P.T.</au><au>Tedeschi, J.R.</au><au>Telles, A.B.</au><au>Thomas, F.</au><au>Thorne, L.A.</au><au>Thümmler, T.</au><au>Van De Pontseele, W.</au><au>VanDevender, B.A.</au><au>Weiss, T.E.</au><au>Wendler, T.</au><au>Ziegler, A.</au><aucorp>The Project 8 collaboration</aucorp><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time signal detection for Cyclotron Radiation Emission Spectroscopy measurements using antenna arrays</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>19</volume><issue>5</issue><spage>P05073</spage><pages>P05073-</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for precision measurement of the energies of charged particles, which is being developed by the Project 8 Collaboration to measure the neutrino mass using tritium beta-decay spectroscopy. Project 8 seeks to use the CRES technique to measure the neutrino mass with a sensitivity of 40 meV, requiring a large supply of tritium atoms stored in a multi-cubic meter detector volume. Antenna arrays are one potential technology compatible with an experiment of this scale, but the capability of an antenna-based CRES experiment to measure the neutrino mass depends on the efficiency of the signal detection algorithms. In this paper, we develop efficiency models for three signal detection algorithms and compare them using simulations from a prototype antenna-based CRES experiment as a case-study. The algorithms include a power threshold, a matched filter template bank, and a neural network based machine learning approach, which are analyzed in terms of their average detection efficiency and relative computational cost. It is found that significant improvements in detection efficiency and, therefore, neutrino mass sensitivity are achievable, with only a moderate increase in computation cost, by utilizing either the matched filter or machine learning approach in place of a power threshold, which is the baseline signal detection algorithm used in previous CRES experiments by Project 8.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/19/05/P05073</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9485-3949</orcidid><orcidid>https://orcid.org/0000-0003-2084-1352</orcidid><orcidid>https://orcid.org/0000-0002-4815-6499</orcidid><orcidid>https://orcid.org/0000-0002-0992-7588</orcidid><orcidid>https://orcid.org/0000-0001-8103-7670</orcidid><orcidid>https://orcid.org/0000-0003-3164-2922</orcidid><orcidid>https://orcid.org/0000-0001-9409-7023</orcidid><orcidid>https://orcid.org/0000-0002-2592-2787</orcidid><orcidid>https://orcid.org/0000-0001-8718-0646</orcidid><orcidid>https://orcid.org/0000-0003-3422-3133</orcidid><orcidid>https://orcid.org/0000-0002-3757-9883</orcidid><orcidid>https://orcid.org/0000-0003-4947-7400</orcidid><orcidid>https://orcid.org/0000-0002-4027-3746</orcidid><orcidid>https://orcid.org/0000-0002-3470-7771</orcidid><orcidid>https://orcid.org/0000-0002-1983-8271</orcidid><orcidid>https://orcid.org/0000-0002-4782-8126</orcidid><orcidid>https://orcid.org/0000-0002-7896-9925</orcidid><orcidid>https://orcid.org/0000-0002-6025-602X</orcidid><orcidid>https://orcid.org/0000-0002-3796-0086</orcidid><orcidid>https://orcid.org/0000-0003-3400-8986</orcidid><orcidid>https://orcid.org/0000-0002-5326-331X</orcidid><orcidid>https://orcid.org/0000-0003-4154-2271</orcidid><orcidid>https://orcid.org/0000-0002-7038-2361</orcidid><orcidid>https://orcid.org/0000-0001-9973-1564</orcidid><orcidid>https://orcid.org/0000-0002-0238-5608</orcidid><orcidid>https://orcid.org/0000-0001-9318-4686</orcidid><orcidid>https://orcid.org/0000-0002-0373-8225</orcidid><orcidid>https://orcid.org/0000-0002-4623-7543</orcidid><orcidid>https://orcid.org/0000-0002-4988-8763</orcidid><orcidid>https://orcid.org/0000-0003-4142-5956</orcidid><orcidid>https://orcid.org/0009-0009-8202-5837</orcidid><orcidid>https://orcid.org/0000-0001-7052-2785</orcidid><orcidid>https://orcid.org/0000-0003-4212-7125</orcidid><orcidid>https://orcid.org/0000-0002-7858-0370</orcidid><orcidid>https://orcid.org/0000-0002-0322-7089</orcidid><orcidid>https://orcid.org/0000-0002-5540-1288</orcidid><orcidid>https://orcid.org/0000-0002-5918-4890</orcidid><orcidid>https://orcid.org/0000-0002-9620-4512</orcidid><orcidid>https://orcid.org/0000-0002-2444-7857</orcidid><orcidid>https://orcid.org/0000-0003-4295-9570</orcidid><orcidid>https://orcid.org/0000-0002-2398-7085</orcidid><orcidid>https://orcid.org/0000-0003-1713-3128</orcidid><orcidid>https://orcid.org/0000-0002-3600-587X</orcidid><orcidid>https://orcid.org/0000-0002-1925-2553</orcidid><orcidid>https://orcid.org/0000-0002-1028-8939</orcidid><orcidid>https://orcid.org/0000000294853949</orcidid><orcidid>https://orcid.org/0000000202385608</orcidid><orcidid>https://orcid.org/0000000342959570</orcidid><orcidid>https://orcid.org/0000000341542271</orcidid><orcidid>https://orcid.org/0000000193184686</orcidid><orcidid>https://orcid.org/0000000247828126</orcidid><orcidid>https://orcid.org/0000000246237543</orcidid><orcidid>https://orcid.org/0000000342127125</orcidid><orcidid>https://orcid.org/0000000194097023</orcidid><orcidid>https://orcid.org/000000025326331X</orcidid><orcidid>https://orcid.org/0000000341425956</orcidid><orcidid>https://orcid.org/000000026025602X</orcidid><orcidid>https://orcid.org/0000000240273746</orcidid><orcidid>https://orcid.org/0000000219252553</orcidid><orcidid>https://orcid.org/0000000219838271</orcidid><orcidid>https://orcid.org/0000000170522785</orcidid><orcidid>https://orcid.org/0000000259184890</orcidid><orcidid>https://orcid.org/0000000270382361</orcidid><orcidid>https://orcid.org/0000000225922787</orcidid><orcidid>https://orcid.org/0000000331642922</orcidid><orcidid>https://orcid.org/0000000255401288</orcidid><orcidid>https://orcid.org/0000000296204512</orcidid><orcidid>https://orcid.org/0000000223987085</orcidid><orcidid>https://orcid.org/0000000237960086</orcidid><orcidid>https://orcid.org/0000000203738225</orcidid><orcidid>https://orcid.org/0000000187180646</orcidid><orcidid>https://orcid.org/0000000224447857</orcidid><orcidid>https://orcid.org/0000000349477400</orcidid><orcidid>https://orcid.org/0000000278580370</orcidid><orcidid>https://orcid.org/0000000209927588</orcidid><orcidid>https://orcid.org/0000000237579883</orcidid><orcidid>https://orcid.org/0000000317133128</orcidid><orcidid>https://orcid.org/0000000203227089</orcidid><orcidid>https://orcid.org/0000000199731564</orcidid><orcidid>https://orcid.org/0000000234707771</orcidid><orcidid>https://orcid.org/0000000334223133</orcidid><orcidid>https://orcid.org/0000000249888763</orcidid><orcidid>https://orcid.org/000000023600587X</orcidid><orcidid>https://orcid.org/0000000181037670</orcidid><orcidid>https://orcid.org/0000000278969925</orcidid><orcidid>https://orcid.org/0000000248156499</orcidid><orcidid>https://orcid.org/0000000210288939</orcidid><orcidid>https://orcid.org/0000000320841352</orcidid><orcidid>https://orcid.org/0000000334008986</orcidid><orcidid>https://orcid.org/0009000982025837</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-0221 |
ispartof | Journal of instrumentation, 2024-05, Vol.19 (5), p.P05073 |
issn | 1748-0221 1748-0221 |
language | eng |
recordid | cdi_osti_scitechconnect_2476674 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Algorithms Antenna arrays Antennas Beta decay Charged particles Computational efficiency Computing costs Cyclotron radiation Cyclotrons Efficiency Emission spectroscopy Machine learning Matched filters Microwave Antennas Neural networks Neutrinos Radiation Sensitivity Signal detection Spectrometers Spectrum analysis Template matching Trigger algorithms Trigger concepts and systems Trigger concepts and systems (hardware and software) Tritium |
title | Real-time signal detection for Cyclotron Radiation Emission Spectroscopy measurements using antenna arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20signal%20detection%20for%20Cyclotron%20Radiation%20Emission%20Spectroscopy%20measurements%20using%20antenna%20arrays&rft.jtitle=Journal%20of%20instrumentation&rft.au=Ashtari%20Esfahani,%20A.&rft.aucorp=The%20Project%208%20collaboration&rft.date=2024-05-01&rft.volume=19&rft.issue=5&rft.spage=P05073&rft.pages=P05073-&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/19/05/P05073&rft_dat=%3Cproquest_osti_%3E3061277812%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061277812&rft_id=info:pmid/&rfr_iscdi=true |