Real-time signal detection for Cyclotron Radiation Emission Spectroscopy measurements using antenna arrays

Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for precision measurement of the energies of charged particles, which is being developed by the Project 8 Collaboration to measure the neutrino mass using tritium beta-decay spectroscopy. Project 8 seeks to use the CRES technique to mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2024-05, Vol.19 (5), p.P05073
Hauptverfasser: Ashtari Esfahani, A., Böser, S., Buzinsky, N., Carmona-Benitez, M.C., Claessens, C., de Viveiros, L., Fertl, M., Formaggio, J.A., Foust, B.T., Gaison, J.K., Grando, M., Hartse, J., Heeger, K.M., Huyan, X., Jones, A.M., Jones, B.J.P., Kazkaz, K., LaRoque, B.H., Li, M., Lindman, A., Marsteller, A., Matthé, C., Mohiuddin, R., Monreal, B., Mucogllava, B., Mueller, R., Negi, A., Nikkel, J.A., Novitski, E., Oblath, N.S., Oueslati, M., Peña, J.I., Pettus, W., Reimann, R., Robertson, R.G.H., Rybka, G., Saldaña, L., Slocum, P.L., Stachurska, J., Sun, Y.-H., Surukuchi, P.T., Tedeschi, J.R., Telles, A.B., Thomas, F., Thorne, L.A., Thümmler, T., Van De Pontseele, W., VanDevender, B.A., Weiss, T.E., Wendler, T., Ziegler, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page P05073
container_title Journal of instrumentation
container_volume 19
creator Ashtari Esfahani, A.
Böser, S.
Buzinsky, N.
Carmona-Benitez, M.C.
Claessens, C.
de Viveiros, L.
Fertl, M.
Formaggio, J.A.
Foust, B.T.
Gaison, J.K.
Grando, M.
Hartse, J.
Heeger, K.M.
Huyan, X.
Jones, A.M.
Jones, B.J.P.
Kazkaz, K.
LaRoque, B.H.
Li, M.
Lindman, A.
Marsteller, A.
Matthé, C.
Mohiuddin, R.
Monreal, B.
Mucogllava, B.
Mueller, R.
Negi, A.
Nikkel, J.A.
Novitski, E.
Oblath, N.S.
Oueslati, M.
Peña, J.I.
Pettus, W.
Reimann, R.
Robertson, R.G.H.
Rybka, G.
Saldaña, L.
Slocum, P.L.
Stachurska, J.
Sun, Y.-H.
Surukuchi, P.T.
Tedeschi, J.R.
Telles, A.B.
Thomas, F.
Thorne, L.A.
Thümmler, T.
Van De Pontseele, W.
VanDevender, B.A.
Weiss, T.E.
Wendler, T.
Ziegler, A.
description Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for precision measurement of the energies of charged particles, which is being developed by the Project 8 Collaboration to measure the neutrino mass using tritium beta-decay spectroscopy. Project 8 seeks to use the CRES technique to measure the neutrino mass with a sensitivity of 40 meV, requiring a large supply of tritium atoms stored in a multi-cubic meter detector volume. Antenna arrays are one potential technology compatible with an experiment of this scale, but the capability of an antenna-based CRES experiment to measure the neutrino mass depends on the efficiency of the signal detection algorithms. In this paper, we develop efficiency models for three signal detection algorithms and compare them using simulations from a prototype antenna-based CRES experiment as a case-study. The algorithms include a power threshold, a matched filter template bank, and a neural network based machine learning approach, which are analyzed in terms of their average detection efficiency and relative computational cost. It is found that significant improvements in detection efficiency and, therefore, neutrino mass sensitivity are achievable, with only a moderate increase in computation cost, by utilizing either the matched filter or machine learning approach in place of a power threshold, which is the baseline signal detection algorithm used in previous CRES experiments by Project 8.
doi_str_mv 10.1088/1748-0221/19/05/P05073
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2476674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061277812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-67cc66478b36e2aacb267f773c50a5c73b1e2a5a4345b7c16d480928fc7e026a3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKd_QYLeCXX5aJLuUsb8gIEy9TqkaToz1qQm2UX_vakV9ULwKifnPO_hvG-WnSN4jWBZzhAvyhxijGZoPoN09gQp5OQgm3wPDn_Vx9lJCFsI6ZwWcJJt11ru8mhaDYLZWLkDtY5aReMsaJwHi17tXPTpt5a1kZ_9ZWtCGIrnLpHeBeW6HrRahr3XrbYxgH0wdgOkjdpaCaT3sg-n2VEjd0Gffb3T7PV2-bK4z1ePdw-Lm1WuCCIxZ1wpxgpeVoRpLKWqMOMN50RRKKnipEKpTWVBClpxhVhdlHCOy0ZxDTGTZJpdjHtdiEYEZZKfN-WsTccKXHDGeJGgyxHqvHvf6xDF1u198h8EgQxhzkuEE8VGSiWXwetGdN600vcCQTGEL4ZcxZCrQHMBqRjDT0I8Co3rfjb_K7r6Q7Q1Nl33GxRd3ZAPJy2V4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061277812</pqid></control><display><type>article</type><title>Real-time signal detection for Cyclotron Radiation Emission Spectroscopy measurements using antenna arrays</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ashtari Esfahani, A. ; Böser, S. ; Buzinsky, N. ; Carmona-Benitez, M.C. ; Claessens, C. ; de Viveiros, L. ; Fertl, M. ; Formaggio, J.A. ; Foust, B.T. ; Gaison, J.K. ; Grando, M. ; Hartse, J. ; Heeger, K.M. ; Huyan, X. ; Jones, A.M. ; Jones, B.J.P. ; Kazkaz, K. ; LaRoque, B.H. ; Li, M. ; Lindman, A. ; Marsteller, A. ; Matthé, C. ; Mohiuddin, R. ; Monreal, B. ; Mucogllava, B. ; Mueller, R. ; Negi, A. ; Nikkel, J.A. ; Novitski, E. ; Oblath, N.S. ; Oueslati, M. ; Peña, J.I. ; Pettus, W. ; Reimann, R. ; Robertson, R.G.H. ; Rybka, G. ; Saldaña, L. ; Slocum, P.L. ; Stachurska, J. ; Sun, Y.-H. ; Surukuchi, P.T. ; Tedeschi, J.R. ; Telles, A.B. ; Thomas, F. ; Thorne, L.A. ; Thümmler, T. ; Van De Pontseele, W. ; VanDevender, B.A. ; Weiss, T.E. ; Wendler, T. ; Ziegler, A.</creator><creatorcontrib>Ashtari Esfahani, A. ; Böser, S. ; Buzinsky, N. ; Carmona-Benitez, M.C. ; Claessens, C. ; de Viveiros, L. ; Fertl, M. ; Formaggio, J.A. ; Foust, B.T. ; Gaison, J.K. ; Grando, M. ; Hartse, J. ; Heeger, K.M. ; Huyan, X. ; Jones, A.M. ; Jones, B.J.P. ; Kazkaz, K. ; LaRoque, B.H. ; Li, M. ; Lindman, A. ; Marsteller, A. ; Matthé, C. ; Mohiuddin, R. ; Monreal, B. ; Mucogllava, B. ; Mueller, R. ; Negi, A. ; Nikkel, J.A. ; Novitski, E. ; Oblath, N.S. ; Oueslati, M. ; Peña, J.I. ; Pettus, W. ; Reimann, R. ; Robertson, R.G.H. ; Rybka, G. ; Saldaña, L. ; Slocum, P.L. ; Stachurska, J. ; Sun, Y.-H. ; Surukuchi, P.T. ; Tedeschi, J.R. ; Telles, A.B. ; Thomas, F. ; Thorne, L.A. ; Thümmler, T. ; Van De Pontseele, W. ; VanDevender, B.A. ; Weiss, T.E. ; Wendler, T. ; Ziegler, A. ; The Project 8 collaboration ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for precision measurement of the energies of charged particles, which is being developed by the Project 8 Collaboration to measure the neutrino mass using tritium beta-decay spectroscopy. Project 8 seeks to use the CRES technique to measure the neutrino mass with a sensitivity of 40 meV, requiring a large supply of tritium atoms stored in a multi-cubic meter detector volume. Antenna arrays are one potential technology compatible with an experiment of this scale, but the capability of an antenna-based CRES experiment to measure the neutrino mass depends on the efficiency of the signal detection algorithms. In this paper, we develop efficiency models for three signal detection algorithms and compare them using simulations from a prototype antenna-based CRES experiment as a case-study. The algorithms include a power threshold, a matched filter template bank, and a neural network based machine learning approach, which are analyzed in terms of their average detection efficiency and relative computational cost. It is found that significant improvements in detection efficiency and, therefore, neutrino mass sensitivity are achievable, with only a moderate increase in computation cost, by utilizing either the matched filter or machine learning approach in place of a power threshold, which is the baseline signal detection algorithm used in previous CRES experiments by Project 8.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/19/05/P05073</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Antenna arrays ; Antennas ; Beta decay ; Charged particles ; Computational efficiency ; Computing costs ; Cyclotron radiation ; Cyclotrons ; Efficiency ; Emission spectroscopy ; Machine learning ; Matched filters ; Microwave Antennas ; Neural networks ; Neutrinos ; Radiation ; Sensitivity ; Signal detection ; Spectrometers ; Spectrum analysis ; Template matching ; Trigger algorithms ; Trigger concepts and systems ; Trigger concepts and systems (hardware and software) ; Tritium</subject><ispartof>Journal of instrumentation, 2024-05, Vol.19 (5), p.P05073</ispartof><rights>2024 IOP Publishing Ltd and Sissa Medialab</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c313t-67cc66478b36e2aacb267f773c50a5c73b1e2a5a4345b7c16d480928fc7e026a3</cites><orcidid>0000-0002-9485-3949 ; 0000-0003-2084-1352 ; 0000-0002-4815-6499 ; 0000-0002-0992-7588 ; 0000-0001-8103-7670 ; 0000-0003-3164-2922 ; 0000-0001-9409-7023 ; 0000-0002-2592-2787 ; 0000-0001-8718-0646 ; 0000-0003-3422-3133 ; 0000-0002-3757-9883 ; 0000-0003-4947-7400 ; 0000-0002-4027-3746 ; 0000-0002-3470-7771 ; 0000-0002-1983-8271 ; 0000-0002-4782-8126 ; 0000-0002-7896-9925 ; 0000-0002-6025-602X ; 0000-0002-3796-0086 ; 0000-0003-3400-8986 ; 0000-0002-5326-331X ; 0000-0003-4154-2271 ; 0000-0002-7038-2361 ; 0000-0001-9973-1564 ; 0000-0002-0238-5608 ; 0000-0001-9318-4686 ; 0000-0002-0373-8225 ; 0000-0002-4623-7543 ; 0000-0002-4988-8763 ; 0000-0003-4142-5956 ; 0009-0009-8202-5837 ; 0000-0001-7052-2785 ; 0000-0003-4212-7125 ; 0000-0002-7858-0370 ; 0000-0002-0322-7089 ; 0000-0002-5540-1288 ; 0000-0002-5918-4890 ; 0000-0002-9620-4512 ; 0000-0002-2444-7857 ; 0000-0003-4295-9570 ; 0000-0002-2398-7085 ; 0000-0003-1713-3128 ; 0000-0002-3600-587X ; 0000-0002-1925-2553 ; 0000-0002-1028-8939 ; 0000000294853949 ; 0000000202385608 ; 0000000342959570 ; 0000000341542271 ; 0000000193184686 ; 0000000247828126 ; 0000000246237543 ; 0000000342127125 ; 0000000194097023 ; 000000025326331X ; 0000000341425956 ; 000000026025602X ; 0000000240273746 ; 0000000219252553 ; 0000000219838271 ; 0000000170522785 ; 0000000259184890 ; 0000000270382361 ; 0000000225922787 ; 0000000331642922 ; 0000000255401288 ; 0000000296204512 ; 0000000223987085 ; 0000000237960086 ; 0000000203738225 ; 0000000187180646 ; 0000000224447857 ; 0000000349477400 ; 0000000278580370 ; 0000000209927588 ; 0000000237579883 ; 0000000317133128 ; 0000000203227089 ; 0000000199731564 ; 0000000234707771 ; 0000000334223133 ; 0000000249888763 ; 000000023600587X ; 0000000181037670 ; 0000000278969925 ; 0000000248156499 ; 0000000210288939 ; 0000000320841352 ; 0000000334008986 ; 0009000982025837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-0221/19/05/P05073/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2476674$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashtari Esfahani, A.</creatorcontrib><creatorcontrib>Böser, S.</creatorcontrib><creatorcontrib>Buzinsky, N.</creatorcontrib><creatorcontrib>Carmona-Benitez, M.C.</creatorcontrib><creatorcontrib>Claessens, C.</creatorcontrib><creatorcontrib>de Viveiros, L.</creatorcontrib><creatorcontrib>Fertl, M.</creatorcontrib><creatorcontrib>Formaggio, J.A.</creatorcontrib><creatorcontrib>Foust, B.T.</creatorcontrib><creatorcontrib>Gaison, J.K.</creatorcontrib><creatorcontrib>Grando, M.</creatorcontrib><creatorcontrib>Hartse, J.</creatorcontrib><creatorcontrib>Heeger, K.M.</creatorcontrib><creatorcontrib>Huyan, X.</creatorcontrib><creatorcontrib>Jones, A.M.</creatorcontrib><creatorcontrib>Jones, B.J.P.</creatorcontrib><creatorcontrib>Kazkaz, K.</creatorcontrib><creatorcontrib>LaRoque, B.H.</creatorcontrib><creatorcontrib>Li, M.</creatorcontrib><creatorcontrib>Lindman, A.</creatorcontrib><creatorcontrib>Marsteller, A.</creatorcontrib><creatorcontrib>Matthé, C.</creatorcontrib><creatorcontrib>Mohiuddin, R.</creatorcontrib><creatorcontrib>Monreal, B.</creatorcontrib><creatorcontrib>Mucogllava, B.</creatorcontrib><creatorcontrib>Mueller, R.</creatorcontrib><creatorcontrib>Negi, A.</creatorcontrib><creatorcontrib>Nikkel, J.A.</creatorcontrib><creatorcontrib>Novitski, E.</creatorcontrib><creatorcontrib>Oblath, N.S.</creatorcontrib><creatorcontrib>Oueslati, M.</creatorcontrib><creatorcontrib>Peña, J.I.</creatorcontrib><creatorcontrib>Pettus, W.</creatorcontrib><creatorcontrib>Reimann, R.</creatorcontrib><creatorcontrib>Robertson, R.G.H.</creatorcontrib><creatorcontrib>Rybka, G.</creatorcontrib><creatorcontrib>Saldaña, L.</creatorcontrib><creatorcontrib>Slocum, P.L.</creatorcontrib><creatorcontrib>Stachurska, J.</creatorcontrib><creatorcontrib>Sun, Y.-H.</creatorcontrib><creatorcontrib>Surukuchi, P.T.</creatorcontrib><creatorcontrib>Tedeschi, J.R.</creatorcontrib><creatorcontrib>Telles, A.B.</creatorcontrib><creatorcontrib>Thomas, F.</creatorcontrib><creatorcontrib>Thorne, L.A.</creatorcontrib><creatorcontrib>Thümmler, T.</creatorcontrib><creatorcontrib>Van De Pontseele, W.</creatorcontrib><creatorcontrib>VanDevender, B.A.</creatorcontrib><creatorcontrib>Weiss, T.E.</creatorcontrib><creatorcontrib>Wendler, T.</creatorcontrib><creatorcontrib>Ziegler, A.</creatorcontrib><creatorcontrib>The Project 8 collaboration</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Real-time signal detection for Cyclotron Radiation Emission Spectroscopy measurements using antenna arrays</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for precision measurement of the energies of charged particles, which is being developed by the Project 8 Collaboration to measure the neutrino mass using tritium beta-decay spectroscopy. Project 8 seeks to use the CRES technique to measure the neutrino mass with a sensitivity of 40 meV, requiring a large supply of tritium atoms stored in a multi-cubic meter detector volume. Antenna arrays are one potential technology compatible with an experiment of this scale, but the capability of an antenna-based CRES experiment to measure the neutrino mass depends on the efficiency of the signal detection algorithms. In this paper, we develop efficiency models for three signal detection algorithms and compare them using simulations from a prototype antenna-based CRES experiment as a case-study. The algorithms include a power threshold, a matched filter template bank, and a neural network based machine learning approach, which are analyzed in terms of their average detection efficiency and relative computational cost. It is found that significant improvements in detection efficiency and, therefore, neutrino mass sensitivity are achievable, with only a moderate increase in computation cost, by utilizing either the matched filter or machine learning approach in place of a power threshold, which is the baseline signal detection algorithm used in previous CRES experiments by Project 8.</description><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Beta decay</subject><subject>Charged particles</subject><subject>Computational efficiency</subject><subject>Computing costs</subject><subject>Cyclotron radiation</subject><subject>Cyclotrons</subject><subject>Efficiency</subject><subject>Emission spectroscopy</subject><subject>Machine learning</subject><subject>Matched filters</subject><subject>Microwave Antennas</subject><subject>Neural networks</subject><subject>Neutrinos</subject><subject>Radiation</subject><subject>Sensitivity</subject><subject>Signal detection</subject><subject>Spectrometers</subject><subject>Spectrum analysis</subject><subject>Template matching</subject><subject>Trigger algorithms</subject><subject>Trigger concepts and systems</subject><subject>Trigger concepts and systems (hardware and software)</subject><subject>Tritium</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhosoOKd_QYLeCXX5aJLuUsb8gIEy9TqkaToz1qQm2UX_vakV9ULwKifnPO_hvG-WnSN4jWBZzhAvyhxijGZoPoN09gQp5OQgm3wPDn_Vx9lJCFsI6ZwWcJJt11ru8mhaDYLZWLkDtY5aReMsaJwHi17tXPTpt5a1kZ_9ZWtCGIrnLpHeBeW6HrRahr3XrbYxgH0wdgOkjdpaCaT3sg-n2VEjd0Gffb3T7PV2-bK4z1ePdw-Lm1WuCCIxZ1wpxgpeVoRpLKWqMOMN50RRKKnipEKpTWVBClpxhVhdlHCOy0ZxDTGTZJpdjHtdiEYEZZKfN-WsTccKXHDGeJGgyxHqvHvf6xDF1u198h8EgQxhzkuEE8VGSiWXwetGdN600vcCQTGEL4ZcxZCrQHMBqRjDT0I8Co3rfjb_K7r6Q7Q1Nl33GxRd3ZAPJy2V4g</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Ashtari Esfahani, A.</creator><creator>Böser, S.</creator><creator>Buzinsky, N.</creator><creator>Carmona-Benitez, M.C.</creator><creator>Claessens, C.</creator><creator>de Viveiros, L.</creator><creator>Fertl, M.</creator><creator>Formaggio, J.A.</creator><creator>Foust, B.T.</creator><creator>Gaison, J.K.</creator><creator>Grando, M.</creator><creator>Hartse, J.</creator><creator>Heeger, K.M.</creator><creator>Huyan, X.</creator><creator>Jones, A.M.</creator><creator>Jones, B.J.P.</creator><creator>Kazkaz, K.</creator><creator>LaRoque, B.H.</creator><creator>Li, M.</creator><creator>Lindman, A.</creator><creator>Marsteller, A.</creator><creator>Matthé, C.</creator><creator>Mohiuddin, R.</creator><creator>Monreal, B.</creator><creator>Mucogllava, B.</creator><creator>Mueller, R.</creator><creator>Negi, A.</creator><creator>Nikkel, J.A.</creator><creator>Novitski, E.</creator><creator>Oblath, N.S.</creator><creator>Oueslati, M.</creator><creator>Peña, J.I.</creator><creator>Pettus, W.</creator><creator>Reimann, R.</creator><creator>Robertson, R.G.H.</creator><creator>Rybka, G.</creator><creator>Saldaña, L.</creator><creator>Slocum, P.L.</creator><creator>Stachurska, J.</creator><creator>Sun, Y.-H.</creator><creator>Surukuchi, P.T.</creator><creator>Tedeschi, J.R.</creator><creator>Telles, A.B.</creator><creator>Thomas, F.</creator><creator>Thorne, L.A.</creator><creator>Thümmler, T.</creator><creator>Van De Pontseele, W.</creator><creator>VanDevender, B.A.</creator><creator>Weiss, T.E.</creator><creator>Wendler, T.</creator><creator>Ziegler, A.</creator><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9485-3949</orcidid><orcidid>https://orcid.org/0000-0003-2084-1352</orcidid><orcidid>https://orcid.org/0000-0002-4815-6499</orcidid><orcidid>https://orcid.org/0000-0002-0992-7588</orcidid><orcidid>https://orcid.org/0000-0001-8103-7670</orcidid><orcidid>https://orcid.org/0000-0003-3164-2922</orcidid><orcidid>https://orcid.org/0000-0001-9409-7023</orcidid><orcidid>https://orcid.org/0000-0002-2592-2787</orcidid><orcidid>https://orcid.org/0000-0001-8718-0646</orcidid><orcidid>https://orcid.org/0000-0003-3422-3133</orcidid><orcidid>https://orcid.org/0000-0002-3757-9883</orcidid><orcidid>https://orcid.org/0000-0003-4947-7400</orcidid><orcidid>https://orcid.org/0000-0002-4027-3746</orcidid><orcidid>https://orcid.org/0000-0002-3470-7771</orcidid><orcidid>https://orcid.org/0000-0002-1983-8271</orcidid><orcidid>https://orcid.org/0000-0002-4782-8126</orcidid><orcidid>https://orcid.org/0000-0002-7896-9925</orcidid><orcidid>https://orcid.org/0000-0002-6025-602X</orcidid><orcidid>https://orcid.org/0000-0002-3796-0086</orcidid><orcidid>https://orcid.org/0000-0003-3400-8986</orcidid><orcidid>https://orcid.org/0000-0002-5326-331X</orcidid><orcidid>https://orcid.org/0000-0003-4154-2271</orcidid><orcidid>https://orcid.org/0000-0002-7038-2361</orcidid><orcidid>https://orcid.org/0000-0001-9973-1564</orcidid><orcidid>https://orcid.org/0000-0002-0238-5608</orcidid><orcidid>https://orcid.org/0000-0001-9318-4686</orcidid><orcidid>https://orcid.org/0000-0002-0373-8225</orcidid><orcidid>https://orcid.org/0000-0002-4623-7543</orcidid><orcidid>https://orcid.org/0000-0002-4988-8763</orcidid><orcidid>https://orcid.org/0000-0003-4142-5956</orcidid><orcidid>https://orcid.org/0009-0009-8202-5837</orcidid><orcidid>https://orcid.org/0000-0001-7052-2785</orcidid><orcidid>https://orcid.org/0000-0003-4212-7125</orcidid><orcidid>https://orcid.org/0000-0002-7858-0370</orcidid><orcidid>https://orcid.org/0000-0002-0322-7089</orcidid><orcidid>https://orcid.org/0000-0002-5540-1288</orcidid><orcidid>https://orcid.org/0000-0002-5918-4890</orcidid><orcidid>https://orcid.org/0000-0002-9620-4512</orcidid><orcidid>https://orcid.org/0000-0002-2444-7857</orcidid><orcidid>https://orcid.org/0000-0003-4295-9570</orcidid><orcidid>https://orcid.org/0000-0002-2398-7085</orcidid><orcidid>https://orcid.org/0000-0003-1713-3128</orcidid><orcidid>https://orcid.org/0000-0002-3600-587X</orcidid><orcidid>https://orcid.org/0000-0002-1925-2553</orcidid><orcidid>https://orcid.org/0000-0002-1028-8939</orcidid><orcidid>https://orcid.org/0000000294853949</orcidid><orcidid>https://orcid.org/0000000202385608</orcidid><orcidid>https://orcid.org/0000000342959570</orcidid><orcidid>https://orcid.org/0000000341542271</orcidid><orcidid>https://orcid.org/0000000193184686</orcidid><orcidid>https://orcid.org/0000000247828126</orcidid><orcidid>https://orcid.org/0000000246237543</orcidid><orcidid>https://orcid.org/0000000342127125</orcidid><orcidid>https://orcid.org/0000000194097023</orcidid><orcidid>https://orcid.org/000000025326331X</orcidid><orcidid>https://orcid.org/0000000341425956</orcidid><orcidid>https://orcid.org/000000026025602X</orcidid><orcidid>https://orcid.org/0000000240273746</orcidid><orcidid>https://orcid.org/0000000219252553</orcidid><orcidid>https://orcid.org/0000000219838271</orcidid><orcidid>https://orcid.org/0000000170522785</orcidid><orcidid>https://orcid.org/0000000259184890</orcidid><orcidid>https://orcid.org/0000000270382361</orcidid><orcidid>https://orcid.org/0000000225922787</orcidid><orcidid>https://orcid.org/0000000331642922</orcidid><orcidid>https://orcid.org/0000000255401288</orcidid><orcidid>https://orcid.org/0000000296204512</orcidid><orcidid>https://orcid.org/0000000223987085</orcidid><orcidid>https://orcid.org/0000000237960086</orcidid><orcidid>https://orcid.org/0000000203738225</orcidid><orcidid>https://orcid.org/0000000187180646</orcidid><orcidid>https://orcid.org/0000000224447857</orcidid><orcidid>https://orcid.org/0000000349477400</orcidid><orcidid>https://orcid.org/0000000278580370</orcidid><orcidid>https://orcid.org/0000000209927588</orcidid><orcidid>https://orcid.org/0000000237579883</orcidid><orcidid>https://orcid.org/0000000317133128</orcidid><orcidid>https://orcid.org/0000000203227089</orcidid><orcidid>https://orcid.org/0000000199731564</orcidid><orcidid>https://orcid.org/0000000234707771</orcidid><orcidid>https://orcid.org/0000000334223133</orcidid><orcidid>https://orcid.org/0000000249888763</orcidid><orcidid>https://orcid.org/000000023600587X</orcidid><orcidid>https://orcid.org/0000000181037670</orcidid><orcidid>https://orcid.org/0000000278969925</orcidid><orcidid>https://orcid.org/0000000248156499</orcidid><orcidid>https://orcid.org/0000000210288939</orcidid><orcidid>https://orcid.org/0000000320841352</orcidid><orcidid>https://orcid.org/0000000334008986</orcidid><orcidid>https://orcid.org/0009000982025837</orcidid></search><sort><creationdate>20240501</creationdate><title>Real-time signal detection for Cyclotron Radiation Emission Spectroscopy measurements using antenna arrays</title><author>Ashtari Esfahani, A. ; Böser, S. ; Buzinsky, N. ; Carmona-Benitez, M.C. ; Claessens, C. ; de Viveiros, L. ; Fertl, M. ; Formaggio, J.A. ; Foust, B.T. ; Gaison, J.K. ; Grando, M. ; Hartse, J. ; Heeger, K.M. ; Huyan, X. ; Jones, A.M. ; Jones, B.J.P. ; Kazkaz, K. ; LaRoque, B.H. ; Li, M. ; Lindman, A. ; Marsteller, A. ; Matthé, C. ; Mohiuddin, R. ; Monreal, B. ; Mucogllava, B. ; Mueller, R. ; Negi, A. ; Nikkel, J.A. ; Novitski, E. ; Oblath, N.S. ; Oueslati, M. ; Peña, J.I. ; Pettus, W. ; Reimann, R. ; Robertson, R.G.H. ; Rybka, G. ; Saldaña, L. ; Slocum, P.L. ; Stachurska, J. ; Sun, Y.-H. ; Surukuchi, P.T. ; Tedeschi, J.R. ; Telles, A.B. ; Thomas, F. ; Thorne, L.A. ; Thümmler, T. ; Van De Pontseele, W. ; VanDevender, B.A. ; Weiss, T.E. ; Wendler, T. ; Ziegler, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-67cc66478b36e2aacb267f773c50a5c73b1e2a5a4345b7c16d480928fc7e026a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Beta decay</topic><topic>Charged particles</topic><topic>Computational efficiency</topic><topic>Computing costs</topic><topic>Cyclotron radiation</topic><topic>Cyclotrons</topic><topic>Efficiency</topic><topic>Emission spectroscopy</topic><topic>Machine learning</topic><topic>Matched filters</topic><topic>Microwave Antennas</topic><topic>Neural networks</topic><topic>Neutrinos</topic><topic>Radiation</topic><topic>Sensitivity</topic><topic>Signal detection</topic><topic>Spectrometers</topic><topic>Spectrum analysis</topic><topic>Template matching</topic><topic>Trigger algorithms</topic><topic>Trigger concepts and systems</topic><topic>Trigger concepts and systems (hardware and software)</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashtari Esfahani, A.</creatorcontrib><creatorcontrib>Böser, S.</creatorcontrib><creatorcontrib>Buzinsky, N.</creatorcontrib><creatorcontrib>Carmona-Benitez, M.C.</creatorcontrib><creatorcontrib>Claessens, C.</creatorcontrib><creatorcontrib>de Viveiros, L.</creatorcontrib><creatorcontrib>Fertl, M.</creatorcontrib><creatorcontrib>Formaggio, J.A.</creatorcontrib><creatorcontrib>Foust, B.T.</creatorcontrib><creatorcontrib>Gaison, J.K.</creatorcontrib><creatorcontrib>Grando, M.</creatorcontrib><creatorcontrib>Hartse, J.</creatorcontrib><creatorcontrib>Heeger, K.M.</creatorcontrib><creatorcontrib>Huyan, X.</creatorcontrib><creatorcontrib>Jones, A.M.</creatorcontrib><creatorcontrib>Jones, B.J.P.</creatorcontrib><creatorcontrib>Kazkaz, K.</creatorcontrib><creatorcontrib>LaRoque, B.H.</creatorcontrib><creatorcontrib>Li, M.</creatorcontrib><creatorcontrib>Lindman, A.</creatorcontrib><creatorcontrib>Marsteller, A.</creatorcontrib><creatorcontrib>Matthé, C.</creatorcontrib><creatorcontrib>Mohiuddin, R.</creatorcontrib><creatorcontrib>Monreal, B.</creatorcontrib><creatorcontrib>Mucogllava, B.</creatorcontrib><creatorcontrib>Mueller, R.</creatorcontrib><creatorcontrib>Negi, A.</creatorcontrib><creatorcontrib>Nikkel, J.A.</creatorcontrib><creatorcontrib>Novitski, E.</creatorcontrib><creatorcontrib>Oblath, N.S.</creatorcontrib><creatorcontrib>Oueslati, M.</creatorcontrib><creatorcontrib>Peña, J.I.</creatorcontrib><creatorcontrib>Pettus, W.</creatorcontrib><creatorcontrib>Reimann, R.</creatorcontrib><creatorcontrib>Robertson, R.G.H.</creatorcontrib><creatorcontrib>Rybka, G.</creatorcontrib><creatorcontrib>Saldaña, L.</creatorcontrib><creatorcontrib>Slocum, P.L.</creatorcontrib><creatorcontrib>Stachurska, J.</creatorcontrib><creatorcontrib>Sun, Y.-H.</creatorcontrib><creatorcontrib>Surukuchi, P.T.</creatorcontrib><creatorcontrib>Tedeschi, J.R.</creatorcontrib><creatorcontrib>Telles, A.B.</creatorcontrib><creatorcontrib>Thomas, F.</creatorcontrib><creatorcontrib>Thorne, L.A.</creatorcontrib><creatorcontrib>Thümmler, T.</creatorcontrib><creatorcontrib>Van De Pontseele, W.</creatorcontrib><creatorcontrib>VanDevender, B.A.</creatorcontrib><creatorcontrib>Weiss, T.E.</creatorcontrib><creatorcontrib>Wendler, T.</creatorcontrib><creatorcontrib>Ziegler, A.</creatorcontrib><creatorcontrib>The Project 8 collaboration</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashtari Esfahani, A.</au><au>Böser, S.</au><au>Buzinsky, N.</au><au>Carmona-Benitez, M.C.</au><au>Claessens, C.</au><au>de Viveiros, L.</au><au>Fertl, M.</au><au>Formaggio, J.A.</au><au>Foust, B.T.</au><au>Gaison, J.K.</au><au>Grando, M.</au><au>Hartse, J.</au><au>Heeger, K.M.</au><au>Huyan, X.</au><au>Jones, A.M.</au><au>Jones, B.J.P.</au><au>Kazkaz, K.</au><au>LaRoque, B.H.</au><au>Li, M.</au><au>Lindman, A.</au><au>Marsteller, A.</au><au>Matthé, C.</au><au>Mohiuddin, R.</au><au>Monreal, B.</au><au>Mucogllava, B.</au><au>Mueller, R.</au><au>Negi, A.</au><au>Nikkel, J.A.</au><au>Novitski, E.</au><au>Oblath, N.S.</au><au>Oueslati, M.</au><au>Peña, J.I.</au><au>Pettus, W.</au><au>Reimann, R.</au><au>Robertson, R.G.H.</au><au>Rybka, G.</au><au>Saldaña, L.</au><au>Slocum, P.L.</au><au>Stachurska, J.</au><au>Sun, Y.-H.</au><au>Surukuchi, P.T.</au><au>Tedeschi, J.R.</au><au>Telles, A.B.</au><au>Thomas, F.</au><au>Thorne, L.A.</au><au>Thümmler, T.</au><au>Van De Pontseele, W.</au><au>VanDevender, B.A.</au><au>Weiss, T.E.</au><au>Wendler, T.</au><au>Ziegler, A.</au><aucorp>The Project 8 collaboration</aucorp><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time signal detection for Cyclotron Radiation Emission Spectroscopy measurements using antenna arrays</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>19</volume><issue>5</issue><spage>P05073</spage><pages>P05073-</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for precision measurement of the energies of charged particles, which is being developed by the Project 8 Collaboration to measure the neutrino mass using tritium beta-decay spectroscopy. Project 8 seeks to use the CRES technique to measure the neutrino mass with a sensitivity of 40 meV, requiring a large supply of tritium atoms stored in a multi-cubic meter detector volume. Antenna arrays are one potential technology compatible with an experiment of this scale, but the capability of an antenna-based CRES experiment to measure the neutrino mass depends on the efficiency of the signal detection algorithms. In this paper, we develop efficiency models for three signal detection algorithms and compare them using simulations from a prototype antenna-based CRES experiment as a case-study. The algorithms include a power threshold, a matched filter template bank, and a neural network based machine learning approach, which are analyzed in terms of their average detection efficiency and relative computational cost. It is found that significant improvements in detection efficiency and, therefore, neutrino mass sensitivity are achievable, with only a moderate increase in computation cost, by utilizing either the matched filter or machine learning approach in place of a power threshold, which is the baseline signal detection algorithm used in previous CRES experiments by Project 8.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/19/05/P05073</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9485-3949</orcidid><orcidid>https://orcid.org/0000-0003-2084-1352</orcidid><orcidid>https://orcid.org/0000-0002-4815-6499</orcidid><orcidid>https://orcid.org/0000-0002-0992-7588</orcidid><orcidid>https://orcid.org/0000-0001-8103-7670</orcidid><orcidid>https://orcid.org/0000-0003-3164-2922</orcidid><orcidid>https://orcid.org/0000-0001-9409-7023</orcidid><orcidid>https://orcid.org/0000-0002-2592-2787</orcidid><orcidid>https://orcid.org/0000-0001-8718-0646</orcidid><orcidid>https://orcid.org/0000-0003-3422-3133</orcidid><orcidid>https://orcid.org/0000-0002-3757-9883</orcidid><orcidid>https://orcid.org/0000-0003-4947-7400</orcidid><orcidid>https://orcid.org/0000-0002-4027-3746</orcidid><orcidid>https://orcid.org/0000-0002-3470-7771</orcidid><orcidid>https://orcid.org/0000-0002-1983-8271</orcidid><orcidid>https://orcid.org/0000-0002-4782-8126</orcidid><orcidid>https://orcid.org/0000-0002-7896-9925</orcidid><orcidid>https://orcid.org/0000-0002-6025-602X</orcidid><orcidid>https://orcid.org/0000-0002-3796-0086</orcidid><orcidid>https://orcid.org/0000-0003-3400-8986</orcidid><orcidid>https://orcid.org/0000-0002-5326-331X</orcidid><orcidid>https://orcid.org/0000-0003-4154-2271</orcidid><orcidid>https://orcid.org/0000-0002-7038-2361</orcidid><orcidid>https://orcid.org/0000-0001-9973-1564</orcidid><orcidid>https://orcid.org/0000-0002-0238-5608</orcidid><orcidid>https://orcid.org/0000-0001-9318-4686</orcidid><orcidid>https://orcid.org/0000-0002-0373-8225</orcidid><orcidid>https://orcid.org/0000-0002-4623-7543</orcidid><orcidid>https://orcid.org/0000-0002-4988-8763</orcidid><orcidid>https://orcid.org/0000-0003-4142-5956</orcidid><orcidid>https://orcid.org/0009-0009-8202-5837</orcidid><orcidid>https://orcid.org/0000-0001-7052-2785</orcidid><orcidid>https://orcid.org/0000-0003-4212-7125</orcidid><orcidid>https://orcid.org/0000-0002-7858-0370</orcidid><orcidid>https://orcid.org/0000-0002-0322-7089</orcidid><orcidid>https://orcid.org/0000-0002-5540-1288</orcidid><orcidid>https://orcid.org/0000-0002-5918-4890</orcidid><orcidid>https://orcid.org/0000-0002-9620-4512</orcidid><orcidid>https://orcid.org/0000-0002-2444-7857</orcidid><orcidid>https://orcid.org/0000-0003-4295-9570</orcidid><orcidid>https://orcid.org/0000-0002-2398-7085</orcidid><orcidid>https://orcid.org/0000-0003-1713-3128</orcidid><orcidid>https://orcid.org/0000-0002-3600-587X</orcidid><orcidid>https://orcid.org/0000-0002-1925-2553</orcidid><orcidid>https://orcid.org/0000-0002-1028-8939</orcidid><orcidid>https://orcid.org/0000000294853949</orcidid><orcidid>https://orcid.org/0000000202385608</orcidid><orcidid>https://orcid.org/0000000342959570</orcidid><orcidid>https://orcid.org/0000000341542271</orcidid><orcidid>https://orcid.org/0000000193184686</orcidid><orcidid>https://orcid.org/0000000247828126</orcidid><orcidid>https://orcid.org/0000000246237543</orcidid><orcidid>https://orcid.org/0000000342127125</orcidid><orcidid>https://orcid.org/0000000194097023</orcidid><orcidid>https://orcid.org/000000025326331X</orcidid><orcidid>https://orcid.org/0000000341425956</orcidid><orcidid>https://orcid.org/000000026025602X</orcidid><orcidid>https://orcid.org/0000000240273746</orcidid><orcidid>https://orcid.org/0000000219252553</orcidid><orcidid>https://orcid.org/0000000219838271</orcidid><orcidid>https://orcid.org/0000000170522785</orcidid><orcidid>https://orcid.org/0000000259184890</orcidid><orcidid>https://orcid.org/0000000270382361</orcidid><orcidid>https://orcid.org/0000000225922787</orcidid><orcidid>https://orcid.org/0000000331642922</orcidid><orcidid>https://orcid.org/0000000255401288</orcidid><orcidid>https://orcid.org/0000000296204512</orcidid><orcidid>https://orcid.org/0000000223987085</orcidid><orcidid>https://orcid.org/0000000237960086</orcidid><orcidid>https://orcid.org/0000000203738225</orcidid><orcidid>https://orcid.org/0000000187180646</orcidid><orcidid>https://orcid.org/0000000224447857</orcidid><orcidid>https://orcid.org/0000000349477400</orcidid><orcidid>https://orcid.org/0000000278580370</orcidid><orcidid>https://orcid.org/0000000209927588</orcidid><orcidid>https://orcid.org/0000000237579883</orcidid><orcidid>https://orcid.org/0000000317133128</orcidid><orcidid>https://orcid.org/0000000203227089</orcidid><orcidid>https://orcid.org/0000000199731564</orcidid><orcidid>https://orcid.org/0000000234707771</orcidid><orcidid>https://orcid.org/0000000334223133</orcidid><orcidid>https://orcid.org/0000000249888763</orcidid><orcidid>https://orcid.org/000000023600587X</orcidid><orcidid>https://orcid.org/0000000181037670</orcidid><orcidid>https://orcid.org/0000000278969925</orcidid><orcidid>https://orcid.org/0000000248156499</orcidid><orcidid>https://orcid.org/0000000210288939</orcidid><orcidid>https://orcid.org/0000000320841352</orcidid><orcidid>https://orcid.org/0000000334008986</orcidid><orcidid>https://orcid.org/0009000982025837</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2024-05, Vol.19 (5), p.P05073
issn 1748-0221
1748-0221
language eng
recordid cdi_osti_scitechconnect_2476674
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Algorithms
Antenna arrays
Antennas
Beta decay
Charged particles
Computational efficiency
Computing costs
Cyclotron radiation
Cyclotrons
Efficiency
Emission spectroscopy
Machine learning
Matched filters
Microwave Antennas
Neural networks
Neutrinos
Radiation
Sensitivity
Signal detection
Spectrometers
Spectrum analysis
Template matching
Trigger algorithms
Trigger concepts and systems
Trigger concepts and systems (hardware and software)
Tritium
title Real-time signal detection for Cyclotron Radiation Emission Spectroscopy measurements using antenna arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20signal%20detection%20for%20Cyclotron%20Radiation%20Emission%20Spectroscopy%20measurements%20using%20antenna%20arrays&rft.jtitle=Journal%20of%20instrumentation&rft.au=Ashtari%20Esfahani,%20A.&rft.aucorp=The%20Project%208%20collaboration&rft.date=2024-05-01&rft.volume=19&rft.issue=5&rft.spage=P05073&rft.pages=P05073-&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/19/05/P05073&rft_dat=%3Cproquest_osti_%3E3061277812%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061277812&rft_id=info:pmid/&rfr_iscdi=true