Two-dimensional-lattice-confined single-molecule-like aggregates
Intermolecular distance largely determines the optoelectronic properties of organic matter. Conventional organic luminescent molecules are commonly used either as aggregates or as single molecules that are diluted in a foreigner matrix. They have garnered great research interest in recent decades fo...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-09, Vol.633 (8030), p.567-574 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 574 |
---|---|
container_issue | 8030 |
container_start_page | 567 |
container_title | Nature (London) |
container_volume | 633 |
creator | Wang, Kang Lin, Zih-Yu De, Angana Kocoj, Conrad A. Shao, Wenhao Yang, Hanjun He, Zehua Coffey, Aidan H. Fruhling, Colton B. Tang, Yuanhao Varadharajan, Dharini Zhu, Chenhui Zhao, Yong Sheng Boltasseva, Alexandra Shalaev, Vladimir M. Guo, Peijun Savoie, Brett M. Dou, Letian |
description | Intermolecular distance largely determines the optoelectronic properties of organic matter. Conventional organic luminescent molecules are commonly used either as aggregates or as single molecules that are diluted in a foreigner matrix. They have garnered great research interest in recent decades for a variety of applications, including light-emitting diodes
1
,
2
, lasers
3
–
5
and quantum technologies
6
,
7
, among others
8
–
10
. However, there is still a knowledge gap on how these molecules behave between the aggregation and dilution states. Here we report an unprecedented phase of molecular aggregate that forms in a two-dimensional hybrid perovskite superlattice with a near-equilibrium distance, which we refer to as a single-molecule-like aggregate (SMA). By implementing two-dimensional superlattices, the organic emitters are held in proximity, but, surprisingly, remain electronically isolated, thereby resulting in a near-unity photoluminescence quantum yield, akin to that of single molecules. Moreover, the emitters within the perovskite superlattices demonstrate strong alignment and dense packing resembling aggregates, allowing for the observation of robust directional emission, substantially enhanced radiative recombination and efficient lasing. Molecular dynamics simulations together with single-crystal structure analysis emphasize the critical role of the internal rotational and vibrational degrees of freedom of the molecules in the two-dimensional lattice for creating the exclusive SMA phase. This two-dimensional superlattice unifies the paradoxical properties of single molecules and aggregates, thus offering exciting possibilities for advanced spectroscopic and photonic applications.
A molecular aggregate formed in a two-dimensional organic–inorganic hybrid perovskite superlattice with a near-equilibrium distance is shown to have a near-unity photoluminescence quantum yield like that of single molecules, despite being in an aggregated state. |
doi_str_mv | 10.1038/s41586-024-07925-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2474941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103449638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1989-994b5b05f1105e333b2aeeb31d3d73589777b2827d10c42a94536ab695f3f4543</originalsourceid><addsrcrecordid>eNp9kUtP3TAQha2qqPdC-wdYoKt2w8bU78cOhHhJSGzo2nKcSepLEl_iRKj_vi7hIbHoakaab86MzkHokJITSrj5mQWVRmHCBCbaMontJ7SmQisslNGf0ZoQZjAxXK3Qfs5bQoikWnxBK26ZoprLNTq9f0q4jj0MOabBd7jz0xQD4JCGJg5Qb3Ic2g5wnzoIc2m6-AAb37YjtH6C_BXtNb7L8O2lHqBflxf359f49u7q5vzsFgdqjcXWikpWRDaUEgmc84p5gIrTmtflEWO11hUzTNeUBMG8FZIrXykrG94IKfgB-r7opjxFl0OcIPwuTw4QJseEFlbQAh0v0G5MjzPkyfUxB-g6P0Cas-PFNyGs4qagPz6g2zSPxYFnygjCKFOFYgsVxpTzCI3bjbH34x9HifsXgltCcCUE9xyCs2Xp6EV6rnqo31ZeXS8AX4BcRkML4_vt_8j-BSHHj5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108402126</pqid></control><display><type>article</type><title>Two-dimensional-lattice-confined single-molecule-like aggregates</title><source>Springer Nature</source><source>Nature</source><creator>Wang, Kang ; Lin, Zih-Yu ; De, Angana ; Kocoj, Conrad A. ; Shao, Wenhao ; Yang, Hanjun ; He, Zehua ; Coffey, Aidan H. ; Fruhling, Colton B. ; Tang, Yuanhao ; Varadharajan, Dharini ; Zhu, Chenhui ; Zhao, Yong Sheng ; Boltasseva, Alexandra ; Shalaev, Vladimir M. ; Guo, Peijun ; Savoie, Brett M. ; Dou, Letian</creator><creatorcontrib>Wang, Kang ; Lin, Zih-Yu ; De, Angana ; Kocoj, Conrad A. ; Shao, Wenhao ; Yang, Hanjun ; He, Zehua ; Coffey, Aidan H. ; Fruhling, Colton B. ; Tang, Yuanhao ; Varadharajan, Dharini ; Zhu, Chenhui ; Zhao, Yong Sheng ; Boltasseva, Alexandra ; Shalaev, Vladimir M. ; Guo, Peijun ; Savoie, Brett M. ; Dou, Letian ; Purdue Univ., West Lafayette, IN (United States)</creatorcontrib><description>Intermolecular distance largely determines the optoelectronic properties of organic matter. Conventional organic luminescent molecules are commonly used either as aggregates or as single molecules that are diluted in a foreigner matrix. They have garnered great research interest in recent decades for a variety of applications, including light-emitting diodes
1
,
2
, lasers
3
–
5
and quantum technologies
6
,
7
, among others
8
–
10
. However, there is still a knowledge gap on how these molecules behave between the aggregation and dilution states. Here we report an unprecedented phase of molecular aggregate that forms in a two-dimensional hybrid perovskite superlattice with a near-equilibrium distance, which we refer to as a single-molecule-like aggregate (SMA). By implementing two-dimensional superlattices, the organic emitters are held in proximity, but, surprisingly, remain electronically isolated, thereby resulting in a near-unity photoluminescence quantum yield, akin to that of single molecules. Moreover, the emitters within the perovskite superlattices demonstrate strong alignment and dense packing resembling aggregates, allowing for the observation of robust directional emission, substantially enhanced radiative recombination and efficient lasing. Molecular dynamics simulations together with single-crystal structure analysis emphasize the critical role of the internal rotational and vibrational degrees of freedom of the molecules in the two-dimensional lattice for creating the exclusive SMA phase. This two-dimensional superlattice unifies the paradoxical properties of single molecules and aggregates, thus offering exciting possibilities for advanced spectroscopic and photonic applications.
A molecular aggregate formed in a two-dimensional organic–inorganic hybrid perovskite superlattice with a near-equilibrium distance is shown to have a near-unity photoluminescence quantum yield like that of single molecules, despite being in an aggregated state.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07925-9</identifier><identifier>PMID: 39261735</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 140/131 ; 639/301/1019/1020 ; 639/301/923/3931 ; 639/624/399 ; 639/638/298/398 ; Aggregates ; Behavior ; Crystal lattices ; Crystal structure ; Dilution ; Dynamic structural analysis ; Electrons ; Emitters ; Equilibrium ; Excitation spectra ; Humanities and Social Sciences ; Lasers, LEDs and light sources ; Lifetime ; Molecular dynamics ; Molecular structure ; multidisciplinary ; Optical materials ; Optical materials and structures ; Optoelectronics ; Organic matter ; Organic molecules in materials science ; Perovskites ; Photoluminescence ; Photonic crystals ; Photons ; Radiative recombination ; Rotational spectra ; Science ; Science (multidisciplinary) ; Simulation ; Single crystals ; Superlattices ; Thin films ; Two dimensional analysis</subject><ispartof>Nature (London), 2024-09, Vol.633 (8030), p.567-574</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Sep 19, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1989-994b5b05f1105e333b2aeeb31d3d73589777b2827d10c42a94536ab695f3f4543</cites><orcidid>0000-0002-7039-4039 ; 0000-0002-3803-4965 ; 0000-0002-4329-0103 ; 0000-0001-8905-2605 ; 0000-0001-6995-4900 ; 0000-0002-5237-0076 ; 0000-0002-7178-1225 ; 0000-0002-4882-8195 ; 0000-0001-8976-1102 ; 0000-0001-6411-8591 ; 0000-0002-6856-6559 ; 0000-0001-5732-7061 ; 0000-0003-2386-2896 ; 0000000164118591 ; 0000000268566559 ; 0000000270394039 ; 0000000323862896 ; 0000000238034965 ; 0000000271781225 ; 0000000189761102 ; 0000000243290103 ; 0000000248828195 ; 0000000169954900 ; 0000000189052605 ; 0000000157327061 ; 0000000252370076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07925-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07925-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39261735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2474941$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Lin, Zih-Yu</creatorcontrib><creatorcontrib>De, Angana</creatorcontrib><creatorcontrib>Kocoj, Conrad A.</creatorcontrib><creatorcontrib>Shao, Wenhao</creatorcontrib><creatorcontrib>Yang, Hanjun</creatorcontrib><creatorcontrib>He, Zehua</creatorcontrib><creatorcontrib>Coffey, Aidan H.</creatorcontrib><creatorcontrib>Fruhling, Colton B.</creatorcontrib><creatorcontrib>Tang, Yuanhao</creatorcontrib><creatorcontrib>Varadharajan, Dharini</creatorcontrib><creatorcontrib>Zhu, Chenhui</creatorcontrib><creatorcontrib>Zhao, Yong Sheng</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><creatorcontrib>Shalaev, Vladimir M.</creatorcontrib><creatorcontrib>Guo, Peijun</creatorcontrib><creatorcontrib>Savoie, Brett M.</creatorcontrib><creatorcontrib>Dou, Letian</creatorcontrib><creatorcontrib>Purdue Univ., West Lafayette, IN (United States)</creatorcontrib><title>Two-dimensional-lattice-confined single-molecule-like aggregates</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Intermolecular distance largely determines the optoelectronic properties of organic matter. Conventional organic luminescent molecules are commonly used either as aggregates or as single molecules that are diluted in a foreigner matrix. They have garnered great research interest in recent decades for a variety of applications, including light-emitting diodes
1
,
2
, lasers
3
–
5
and quantum technologies
6
,
7
, among others
8
–
10
. However, there is still a knowledge gap on how these molecules behave between the aggregation and dilution states. Here we report an unprecedented phase of molecular aggregate that forms in a two-dimensional hybrid perovskite superlattice with a near-equilibrium distance, which we refer to as a single-molecule-like aggregate (SMA). By implementing two-dimensional superlattices, the organic emitters are held in proximity, but, surprisingly, remain electronically isolated, thereby resulting in a near-unity photoluminescence quantum yield, akin to that of single molecules. Moreover, the emitters within the perovskite superlattices demonstrate strong alignment and dense packing resembling aggregates, allowing for the observation of robust directional emission, substantially enhanced radiative recombination and efficient lasing. Molecular dynamics simulations together with single-crystal structure analysis emphasize the critical role of the internal rotational and vibrational degrees of freedom of the molecules in the two-dimensional lattice for creating the exclusive SMA phase. This two-dimensional superlattice unifies the paradoxical properties of single molecules and aggregates, thus offering exciting possibilities for advanced spectroscopic and photonic applications.
A molecular aggregate formed in a two-dimensional organic–inorganic hybrid perovskite superlattice with a near-equilibrium distance is shown to have a near-unity photoluminescence quantum yield like that of single molecules, despite being in an aggregated state.</description><subject>140/125</subject><subject>140/131</subject><subject>639/301/1019/1020</subject><subject>639/301/923/3931</subject><subject>639/624/399</subject><subject>639/638/298/398</subject><subject>Aggregates</subject><subject>Behavior</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Dilution</subject><subject>Dynamic structural analysis</subject><subject>Electrons</subject><subject>Emitters</subject><subject>Equilibrium</subject><subject>Excitation spectra</subject><subject>Humanities and Social Sciences</subject><subject>Lasers, LEDs and light sources</subject><subject>Lifetime</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>multidisciplinary</subject><subject>Optical materials</subject><subject>Optical materials and structures</subject><subject>Optoelectronics</subject><subject>Organic matter</subject><subject>Organic molecules in materials science</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Photonic crystals</subject><subject>Photons</subject><subject>Radiative recombination</subject><subject>Rotational spectra</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Single crystals</subject><subject>Superlattices</subject><subject>Thin films</subject><subject>Two dimensional analysis</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtP3TAQha2qqPdC-wdYoKt2w8bU78cOhHhJSGzo2nKcSepLEl_iRKj_vi7hIbHoakaab86MzkHokJITSrj5mQWVRmHCBCbaMontJ7SmQisslNGf0ZoQZjAxXK3Qfs5bQoikWnxBK26ZoprLNTq9f0q4jj0MOabBd7jz0xQD4JCGJg5Qb3Ic2g5wnzoIc2m6-AAb37YjtH6C_BXtNb7L8O2lHqBflxf359f49u7q5vzsFgdqjcXWikpWRDaUEgmc84p5gIrTmtflEWO11hUzTNeUBMG8FZIrXykrG94IKfgB-r7opjxFl0OcIPwuTw4QJseEFlbQAh0v0G5MjzPkyfUxB-g6P0Cas-PFNyGs4qagPz6g2zSPxYFnygjCKFOFYgsVxpTzCI3bjbH34x9HifsXgltCcCUE9xyCs2Xp6EV6rnqo31ZeXS8AX4BcRkML4_vt_8j-BSHHj5Q</recordid><startdate>20240919</startdate><enddate>20240919</enddate><creator>Wang, Kang</creator><creator>Lin, Zih-Yu</creator><creator>De, Angana</creator><creator>Kocoj, Conrad A.</creator><creator>Shao, Wenhao</creator><creator>Yang, Hanjun</creator><creator>He, Zehua</creator><creator>Coffey, Aidan H.</creator><creator>Fruhling, Colton B.</creator><creator>Tang, Yuanhao</creator><creator>Varadharajan, Dharini</creator><creator>Zhu, Chenhui</creator><creator>Zhao, Yong Sheng</creator><creator>Boltasseva, Alexandra</creator><creator>Shalaev, Vladimir M.</creator><creator>Guo, Peijun</creator><creator>Savoie, Brett M.</creator><creator>Dou, Letian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7039-4039</orcidid><orcidid>https://orcid.org/0000-0002-3803-4965</orcidid><orcidid>https://orcid.org/0000-0002-4329-0103</orcidid><orcidid>https://orcid.org/0000-0001-8905-2605</orcidid><orcidid>https://orcid.org/0000-0001-6995-4900</orcidid><orcidid>https://orcid.org/0000-0002-5237-0076</orcidid><orcidid>https://orcid.org/0000-0002-7178-1225</orcidid><orcidid>https://orcid.org/0000-0002-4882-8195</orcidid><orcidid>https://orcid.org/0000-0001-8976-1102</orcidid><orcidid>https://orcid.org/0000-0001-6411-8591</orcidid><orcidid>https://orcid.org/0000-0002-6856-6559</orcidid><orcidid>https://orcid.org/0000-0001-5732-7061</orcidid><orcidid>https://orcid.org/0000-0003-2386-2896</orcidid><orcidid>https://orcid.org/0000000164118591</orcidid><orcidid>https://orcid.org/0000000268566559</orcidid><orcidid>https://orcid.org/0000000270394039</orcidid><orcidid>https://orcid.org/0000000323862896</orcidid><orcidid>https://orcid.org/0000000238034965</orcidid><orcidid>https://orcid.org/0000000271781225</orcidid><orcidid>https://orcid.org/0000000189761102</orcidid><orcidid>https://orcid.org/0000000243290103</orcidid><orcidid>https://orcid.org/0000000248828195</orcidid><orcidid>https://orcid.org/0000000169954900</orcidid><orcidid>https://orcid.org/0000000189052605</orcidid><orcidid>https://orcid.org/0000000157327061</orcidid><orcidid>https://orcid.org/0000000252370076</orcidid></search><sort><creationdate>20240919</creationdate><title>Two-dimensional-lattice-confined single-molecule-like aggregates</title><author>Wang, Kang ; Lin, Zih-Yu ; De, Angana ; Kocoj, Conrad A. ; Shao, Wenhao ; Yang, Hanjun ; He, Zehua ; Coffey, Aidan H. ; Fruhling, Colton B. ; Tang, Yuanhao ; Varadharajan, Dharini ; Zhu, Chenhui ; Zhao, Yong Sheng ; Boltasseva, Alexandra ; Shalaev, Vladimir M. ; Guo, Peijun ; Savoie, Brett M. ; Dou, Letian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1989-994b5b05f1105e333b2aeeb31d3d73589777b2827d10c42a94536ab695f3f4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/125</topic><topic>140/131</topic><topic>639/301/1019/1020</topic><topic>639/301/923/3931</topic><topic>639/624/399</topic><topic>639/638/298/398</topic><topic>Aggregates</topic><topic>Behavior</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Dilution</topic><topic>Dynamic structural analysis</topic><topic>Electrons</topic><topic>Emitters</topic><topic>Equilibrium</topic><topic>Excitation spectra</topic><topic>Humanities and Social Sciences</topic><topic>Lasers, LEDs and light sources</topic><topic>Lifetime</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>multidisciplinary</topic><topic>Optical materials</topic><topic>Optical materials and structures</topic><topic>Optoelectronics</topic><topic>Organic matter</topic><topic>Organic molecules in materials science</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Photonic crystals</topic><topic>Photons</topic><topic>Radiative recombination</topic><topic>Rotational spectra</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Single crystals</topic><topic>Superlattices</topic><topic>Thin films</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Lin, Zih-Yu</creatorcontrib><creatorcontrib>De, Angana</creatorcontrib><creatorcontrib>Kocoj, Conrad A.</creatorcontrib><creatorcontrib>Shao, Wenhao</creatorcontrib><creatorcontrib>Yang, Hanjun</creatorcontrib><creatorcontrib>He, Zehua</creatorcontrib><creatorcontrib>Coffey, Aidan H.</creatorcontrib><creatorcontrib>Fruhling, Colton B.</creatorcontrib><creatorcontrib>Tang, Yuanhao</creatorcontrib><creatorcontrib>Varadharajan, Dharini</creatorcontrib><creatorcontrib>Zhu, Chenhui</creatorcontrib><creatorcontrib>Zhao, Yong Sheng</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><creatorcontrib>Shalaev, Vladimir M.</creatorcontrib><creatorcontrib>Guo, Peijun</creatorcontrib><creatorcontrib>Savoie, Brett M.</creatorcontrib><creatorcontrib>Dou, Letian</creatorcontrib><creatorcontrib>Purdue Univ., West Lafayette, IN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kang</au><au>Lin, Zih-Yu</au><au>De, Angana</au><au>Kocoj, Conrad A.</au><au>Shao, Wenhao</au><au>Yang, Hanjun</au><au>He, Zehua</au><au>Coffey, Aidan H.</au><au>Fruhling, Colton B.</au><au>Tang, Yuanhao</au><au>Varadharajan, Dharini</au><au>Zhu, Chenhui</au><au>Zhao, Yong Sheng</au><au>Boltasseva, Alexandra</au><au>Shalaev, Vladimir M.</au><au>Guo, Peijun</au><au>Savoie, Brett M.</au><au>Dou, Letian</au><aucorp>Purdue Univ., West Lafayette, IN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional-lattice-confined single-molecule-like aggregates</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-09-19</date><risdate>2024</risdate><volume>633</volume><issue>8030</issue><spage>567</spage><epage>574</epage><pages>567-574</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Intermolecular distance largely determines the optoelectronic properties of organic matter. Conventional organic luminescent molecules are commonly used either as aggregates or as single molecules that are diluted in a foreigner matrix. They have garnered great research interest in recent decades for a variety of applications, including light-emitting diodes
1
,
2
, lasers
3
–
5
and quantum technologies
6
,
7
, among others
8
–
10
. However, there is still a knowledge gap on how these molecules behave between the aggregation and dilution states. Here we report an unprecedented phase of molecular aggregate that forms in a two-dimensional hybrid perovskite superlattice with a near-equilibrium distance, which we refer to as a single-molecule-like aggregate (SMA). By implementing two-dimensional superlattices, the organic emitters are held in proximity, but, surprisingly, remain electronically isolated, thereby resulting in a near-unity photoluminescence quantum yield, akin to that of single molecules. Moreover, the emitters within the perovskite superlattices demonstrate strong alignment and dense packing resembling aggregates, allowing for the observation of robust directional emission, substantially enhanced radiative recombination and efficient lasing. Molecular dynamics simulations together with single-crystal structure analysis emphasize the critical role of the internal rotational and vibrational degrees of freedom of the molecules in the two-dimensional lattice for creating the exclusive SMA phase. This two-dimensional superlattice unifies the paradoxical properties of single molecules and aggregates, thus offering exciting possibilities for advanced spectroscopic and photonic applications.
A molecular aggregate formed in a two-dimensional organic–inorganic hybrid perovskite superlattice with a near-equilibrium distance is shown to have a near-unity photoluminescence quantum yield like that of single molecules, despite being in an aggregated state.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39261735</pmid><doi>10.1038/s41586-024-07925-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7039-4039</orcidid><orcidid>https://orcid.org/0000-0002-3803-4965</orcidid><orcidid>https://orcid.org/0000-0002-4329-0103</orcidid><orcidid>https://orcid.org/0000-0001-8905-2605</orcidid><orcidid>https://orcid.org/0000-0001-6995-4900</orcidid><orcidid>https://orcid.org/0000-0002-5237-0076</orcidid><orcidid>https://orcid.org/0000-0002-7178-1225</orcidid><orcidid>https://orcid.org/0000-0002-4882-8195</orcidid><orcidid>https://orcid.org/0000-0001-8976-1102</orcidid><orcidid>https://orcid.org/0000-0001-6411-8591</orcidid><orcidid>https://orcid.org/0000-0002-6856-6559</orcidid><orcidid>https://orcid.org/0000-0001-5732-7061</orcidid><orcidid>https://orcid.org/0000-0003-2386-2896</orcidid><orcidid>https://orcid.org/0000000164118591</orcidid><orcidid>https://orcid.org/0000000268566559</orcidid><orcidid>https://orcid.org/0000000270394039</orcidid><orcidid>https://orcid.org/0000000323862896</orcidid><orcidid>https://orcid.org/0000000238034965</orcidid><orcidid>https://orcid.org/0000000271781225</orcidid><orcidid>https://orcid.org/0000000189761102</orcidid><orcidid>https://orcid.org/0000000243290103</orcidid><orcidid>https://orcid.org/0000000248828195</orcidid><orcidid>https://orcid.org/0000000169954900</orcidid><orcidid>https://orcid.org/0000000189052605</orcidid><orcidid>https://orcid.org/0000000157327061</orcidid><orcidid>https://orcid.org/0000000252370076</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-09, Vol.633 (8030), p.567-574 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_2474941 |
source | Springer Nature; Nature |
subjects | 140/125 140/131 639/301/1019/1020 639/301/923/3931 639/624/399 639/638/298/398 Aggregates Behavior Crystal lattices Crystal structure Dilution Dynamic structural analysis Electrons Emitters Equilibrium Excitation spectra Humanities and Social Sciences Lasers, LEDs and light sources Lifetime Molecular dynamics Molecular structure multidisciplinary Optical materials Optical materials and structures Optoelectronics Organic matter Organic molecules in materials science Perovskites Photoluminescence Photonic crystals Photons Radiative recombination Rotational spectra Science Science (multidisciplinary) Simulation Single crystals Superlattices Thin films Two dimensional analysis |
title | Two-dimensional-lattice-confined single-molecule-like aggregates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional-lattice-confined%20single-molecule-like%20aggregates&rft.jtitle=Nature%20(London)&rft.au=Wang,%20Kang&rft.aucorp=Purdue%20Univ.,%20West%20Lafayette,%20IN%20(United%20States)&rft.date=2024-09-19&rft.volume=633&rft.issue=8030&rft.spage=567&rft.epage=574&rft.pages=567-574&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07925-9&rft_dat=%3Cproquest_osti_%3E3103449638%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108402126&rft_id=info:pmid/39261735&rfr_iscdi=true |