Systematically derived thermodynamic properties for alkane oxidation

Key combustion properties, such as ignition delay time, show strong sensitivity to the thermochemistry of the main species in the standard radical oxidation pathway at low temperatures (600-1000K). Significant uncertainties persist in current estimates of thermodynamic properties, particularly for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2023-01, Vol.257 (Part 1)
Hauptverfasser: Elliott, Sarah N., Moore, III, Kevin B., Copan, Andreas V., Georgievskii, Yuri, Keçeli, Murat, Somers, Kieran P., Ghosh, Manik K., Curran, Henry J., Klippenstein, Stephen J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Part 1
container_start_page
container_title Combustion and flame
container_volume 257
creator Elliott, Sarah N.
Moore, III, Kevin B.
Copan, Andreas V.
Georgievskii, Yuri
Keçeli, Murat
Somers, Kieran P.
Ghosh, Manik K.
Curran, Henry J.
Klippenstein, Stephen J.
description Key combustion properties, such as ignition delay time, show strong sensitivity to the thermochemistry of the main species in the standard radical oxidation pathway at low temperatures (600-1000K). Significant uncertainties persist in current estimates of thermodynamic properties, particularly for the larger species of relevance to common practical fuels. In this article, we use advanced computational schemes to evaluate thermodynamic properties for the fuel, fuel radical, peroxy, hydroperoxy-alkyl radical, and hydroperoxide species for a set of 17 fuels containing up to 9 carbon atoms, and with various degrees of branching in the alkane backbone. The procedure, termed STAR-1D, combines conformer sampling to find the minimum geometry, B2PLYP-D3/cc-pVTZ harmonic frequency evaluations, and omega B97X-D/cc-pVTZ one-dimensional torsional mapping. It includes two physically-based scaling routines: a frequency-dependent scaling to B2PLYP-D3/cc-pVTZ anharmonic frequencies and a scaling of one-dimensional omega B97X-D/ccpVTZ torsional profiles to reproduce the product of the B2PLYP-D3/cc-pVTZ frequencies in the harmonic limit. Substantive comparisons with existing experimental databases, together with careful examinations of key theoretical assumptions, are used to explore the accuracy of the predictions. These computationally intensive explorations of 195 species were facilitated by automated thermochemistry software. Further, high accuracy 0 K heats of formation from a separate study are used with the STAR-1D computations to generate NASA polynomial representations. In addition to their intrinsic value, the present results also provide a reliable database for the optimization of group additivity or machine learning schemes for scaling to larger combustion systems. Towards this end a complementary extensive conformational analysis is carried out for the medium sized species and the thermodynamic properties of the lowest energy hydrogen-bonded and non-hydrogen bonded conformers are contrasted for larger hydroperoxy-alkyl radical species.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2474891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2474891</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24748913</originalsourceid><addsrcrecordid>eNqNyzkOwjAQQFEXIBGWO1j0kSaLlFCziB76yLInisHxRJ4RIreHggNQ_eb9hcoACsjLooWVWjM_AKCpqypTp9vMgqMRb00Is3aY_AudlgHTSG6OZvRWT4kmTOKRdU9Jm_A0ETW9vfuOFLdq2ZvAuPt1o_aX8_14zYnFd2y9oB0sxYhWurJu6vZQVH-hDwIcOzY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Systematically derived thermodynamic properties for alkane oxidation</title><source>Elsevier ScienceDirect Journals</source><creator>Elliott, Sarah N. ; Moore, III, Kevin B. ; Copan, Andreas V. ; Georgievskii, Yuri ; Keçeli, Murat ; Somers, Kieran P. ; Ghosh, Manik K. ; Curran, Henry J. ; Klippenstein, Stephen J.</creator><creatorcontrib>Elliott, Sarah N. ; Moore, III, Kevin B. ; Copan, Andreas V. ; Georgievskii, Yuri ; Keçeli, Murat ; Somers, Kieran P. ; Ghosh, Manik K. ; Curran, Henry J. ; Klippenstein, Stephen J. ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Key combustion properties, such as ignition delay time, show strong sensitivity to the thermochemistry of the main species in the standard radical oxidation pathway at low temperatures (600-1000K). Significant uncertainties persist in current estimates of thermodynamic properties, particularly for the larger species of relevance to common practical fuels. In this article, we use advanced computational schemes to evaluate thermodynamic properties for the fuel, fuel radical, peroxy, hydroperoxy-alkyl radical, and hydroperoxide species for a set of 17 fuels containing up to 9 carbon atoms, and with various degrees of branching in the alkane backbone. The procedure, termed STAR-1D, combines conformer sampling to find the minimum geometry, B2PLYP-D3/cc-pVTZ harmonic frequency evaluations, and omega B97X-D/cc-pVTZ one-dimensional torsional mapping. It includes two physically-based scaling routines: a frequency-dependent scaling to B2PLYP-D3/cc-pVTZ anharmonic frequencies and a scaling of one-dimensional omega B97X-D/ccpVTZ torsional profiles to reproduce the product of the B2PLYP-D3/cc-pVTZ frequencies in the harmonic limit. Substantive comparisons with existing experimental databases, together with careful examinations of key theoretical assumptions, are used to explore the accuracy of the predictions. These computationally intensive explorations of 195 species were facilitated by automated thermochemistry software. Further, high accuracy 0 K heats of formation from a separate study are used with the STAR-1D computations to generate NASA polynomial representations. In addition to their intrinsic value, the present results also provide a reliable database for the optimization of group additivity or machine learning schemes for scaling to larger combustion systems. Towards this end a complementary extensive conformational analysis is carried out for the medium sized species and the thermodynamic properties of the lowest energy hydrogen-bonded and non-hydrogen bonded conformers are contrasted for larger hydroperoxy-alkyl radical species.</description><identifier>ISSN: 0010-2180</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Ab initio ; entropy ; Gibbs energy ; heat capacity ; low-temperature oxidation ; thermodynamics</subject><ispartof>Combustion and flame, 2023-01, Vol.257 (Part 1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000251248562 ; 0000000286820813 ; 0000000193569228 ; 0000000174633060 ; 0000000185889272 ; 0000000162979187 ; 0000000295718765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2474891$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Elliott, Sarah N.</creatorcontrib><creatorcontrib>Moore, III, Kevin B.</creatorcontrib><creatorcontrib>Copan, Andreas V.</creatorcontrib><creatorcontrib>Georgievskii, Yuri</creatorcontrib><creatorcontrib>Keçeli, Murat</creatorcontrib><creatorcontrib>Somers, Kieran P.</creatorcontrib><creatorcontrib>Ghosh, Manik K.</creatorcontrib><creatorcontrib>Curran, Henry J.</creatorcontrib><creatorcontrib>Klippenstein, Stephen J.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Systematically derived thermodynamic properties for alkane oxidation</title><title>Combustion and flame</title><description>Key combustion properties, such as ignition delay time, show strong sensitivity to the thermochemistry of the main species in the standard radical oxidation pathway at low temperatures (600-1000K). Significant uncertainties persist in current estimates of thermodynamic properties, particularly for the larger species of relevance to common practical fuels. In this article, we use advanced computational schemes to evaluate thermodynamic properties for the fuel, fuel radical, peroxy, hydroperoxy-alkyl radical, and hydroperoxide species for a set of 17 fuels containing up to 9 carbon atoms, and with various degrees of branching in the alkane backbone. The procedure, termed STAR-1D, combines conformer sampling to find the minimum geometry, B2PLYP-D3/cc-pVTZ harmonic frequency evaluations, and omega B97X-D/cc-pVTZ one-dimensional torsional mapping. It includes two physically-based scaling routines: a frequency-dependent scaling to B2PLYP-D3/cc-pVTZ anharmonic frequencies and a scaling of one-dimensional omega B97X-D/ccpVTZ torsional profiles to reproduce the product of the B2PLYP-D3/cc-pVTZ frequencies in the harmonic limit. Substantive comparisons with existing experimental databases, together with careful examinations of key theoretical assumptions, are used to explore the accuracy of the predictions. These computationally intensive explorations of 195 species were facilitated by automated thermochemistry software. Further, high accuracy 0 K heats of formation from a separate study are used with the STAR-1D computations to generate NASA polynomial representations. In addition to their intrinsic value, the present results also provide a reliable database for the optimization of group additivity or machine learning schemes for scaling to larger combustion systems. Towards this end a complementary extensive conformational analysis is carried out for the medium sized species and the thermodynamic properties of the lowest energy hydrogen-bonded and non-hydrogen bonded conformers are contrasted for larger hydroperoxy-alkyl radical species.</description><subject>Ab initio</subject><subject>entropy</subject><subject>Gibbs energy</subject><subject>heat capacity</subject><subject>low-temperature oxidation</subject><subject>thermodynamics</subject><issn>0010-2180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNyzkOwjAQQFEXIBGWO1j0kSaLlFCziB76yLInisHxRJ4RIreHggNQ_eb9hcoACsjLooWVWjM_AKCpqypTp9vMgqMRb00Is3aY_AudlgHTSG6OZvRWT4kmTOKRdU9Jm_A0ETW9vfuOFLdq2ZvAuPt1o_aX8_14zYnFd2y9oB0sxYhWurJu6vZQVH-hDwIcOzY</recordid><startdate>20230111</startdate><enddate>20230111</enddate><creator>Elliott, Sarah N.</creator><creator>Moore, III, Kevin B.</creator><creator>Copan, Andreas V.</creator><creator>Georgievskii, Yuri</creator><creator>Keçeli, Murat</creator><creator>Somers, Kieran P.</creator><creator>Ghosh, Manik K.</creator><creator>Curran, Henry J.</creator><creator>Klippenstein, Stephen J.</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000251248562</orcidid><orcidid>https://orcid.org/0000000286820813</orcidid><orcidid>https://orcid.org/0000000193569228</orcidid><orcidid>https://orcid.org/0000000174633060</orcidid><orcidid>https://orcid.org/0000000185889272</orcidid><orcidid>https://orcid.org/0000000162979187</orcidid><orcidid>https://orcid.org/0000000295718765</orcidid></search><sort><creationdate>20230111</creationdate><title>Systematically derived thermodynamic properties for alkane oxidation</title><author>Elliott, Sarah N. ; Moore, III, Kevin B. ; Copan, Andreas V. ; Georgievskii, Yuri ; Keçeli, Murat ; Somers, Kieran P. ; Ghosh, Manik K. ; Curran, Henry J. ; Klippenstein, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24748913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ab initio</topic><topic>entropy</topic><topic>Gibbs energy</topic><topic>heat capacity</topic><topic>low-temperature oxidation</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elliott, Sarah N.</creatorcontrib><creatorcontrib>Moore, III, Kevin B.</creatorcontrib><creatorcontrib>Copan, Andreas V.</creatorcontrib><creatorcontrib>Georgievskii, Yuri</creatorcontrib><creatorcontrib>Keçeli, Murat</creatorcontrib><creatorcontrib>Somers, Kieran P.</creatorcontrib><creatorcontrib>Ghosh, Manik K.</creatorcontrib><creatorcontrib>Curran, Henry J.</creatorcontrib><creatorcontrib>Klippenstein, Stephen J.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elliott, Sarah N.</au><au>Moore, III, Kevin B.</au><au>Copan, Andreas V.</au><au>Georgievskii, Yuri</au><au>Keçeli, Murat</au><au>Somers, Kieran P.</au><au>Ghosh, Manik K.</au><au>Curran, Henry J.</au><au>Klippenstein, Stephen J.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematically derived thermodynamic properties for alkane oxidation</atitle><jtitle>Combustion and flame</jtitle><date>2023-01-11</date><risdate>2023</risdate><volume>257</volume><issue>Part 1</issue><issn>0010-2180</issn><abstract>Key combustion properties, such as ignition delay time, show strong sensitivity to the thermochemistry of the main species in the standard radical oxidation pathway at low temperatures (600-1000K). Significant uncertainties persist in current estimates of thermodynamic properties, particularly for the larger species of relevance to common practical fuels. In this article, we use advanced computational schemes to evaluate thermodynamic properties for the fuel, fuel radical, peroxy, hydroperoxy-alkyl radical, and hydroperoxide species for a set of 17 fuels containing up to 9 carbon atoms, and with various degrees of branching in the alkane backbone. The procedure, termed STAR-1D, combines conformer sampling to find the minimum geometry, B2PLYP-D3/cc-pVTZ harmonic frequency evaluations, and omega B97X-D/cc-pVTZ one-dimensional torsional mapping. It includes two physically-based scaling routines: a frequency-dependent scaling to B2PLYP-D3/cc-pVTZ anharmonic frequencies and a scaling of one-dimensional omega B97X-D/ccpVTZ torsional profiles to reproduce the product of the B2PLYP-D3/cc-pVTZ frequencies in the harmonic limit. Substantive comparisons with existing experimental databases, together with careful examinations of key theoretical assumptions, are used to explore the accuracy of the predictions. These computationally intensive explorations of 195 species were facilitated by automated thermochemistry software. Further, high accuracy 0 K heats of formation from a separate study are used with the STAR-1D computations to generate NASA polynomial representations. In addition to their intrinsic value, the present results also provide a reliable database for the optimization of group additivity or machine learning schemes for scaling to larger combustion systems. Towards this end a complementary extensive conformational analysis is carried out for the medium sized species and the thermodynamic properties of the lowest energy hydrogen-bonded and non-hydrogen bonded conformers are contrasted for larger hydroperoxy-alkyl radical species.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000251248562</orcidid><orcidid>https://orcid.org/0000000286820813</orcidid><orcidid>https://orcid.org/0000000193569228</orcidid><orcidid>https://orcid.org/0000000174633060</orcidid><orcidid>https://orcid.org/0000000185889272</orcidid><orcidid>https://orcid.org/0000000162979187</orcidid><orcidid>https://orcid.org/0000000295718765</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2023-01, Vol.257 (Part 1)
issn 0010-2180
language eng
recordid cdi_osti_scitechconnect_2474891
source Elsevier ScienceDirect Journals
subjects Ab initio
entropy
Gibbs energy
heat capacity
low-temperature oxidation
thermodynamics
title Systematically derived thermodynamic properties for alkane oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematically%20derived%20thermodynamic%20properties%20for%20alkane%20oxidation&rft.jtitle=Combustion%20and%20flame&rft.au=Elliott,%20Sarah%20N.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-01-11&rft.volume=257&rft.issue=Part%201&rft.issn=0010-2180&rft_id=info:doi/&rft_dat=%3Costi%3E2474891%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true