Distilling the Essential Elements of Nuclear Binding via Neural-Network Quantum States

To distill the essential elements of nuclear binding, we seek the simplest Hamiltonian capable of modeling atomic nuclei with percent-level accuracy. A critical aspect of this endeavor consists of accurately solving the quantum many-body problem without incurring an exponential computing cost with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-10, Vol.133 (14), p.142501, Article 142501
Hauptverfasser: Gnech, Alex, Fore, Bryce, Tropiano, Anthony J, Lovato, Alessandro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 142501
container_title Physical review letters
container_volume 133
creator Gnech, Alex
Fore, Bryce
Tropiano, Anthony J
Lovato, Alessandro
description To distill the essential elements of nuclear binding, we seek the simplest Hamiltonian capable of modeling atomic nuclei with percent-level accuracy. A critical aspect of this endeavor consists of accurately solving the quantum many-body problem without incurring an exponential computing cost with the number of nucleons. We address this challenge by leveraging a variational Monte Carlo method based on a highly expressive neural-network quantum state ansatz. In addition to computing binding energies and charge radii of nuclei with up to A=20 nucleons, by evaluating their magnetic moments, we demonstrate that neural-network quantum states are able to correctly capture the self-emerging nuclear shell structure. To this end, we introduce a novel computational protocol based on adding an external magnetic field to the nuclear Hamiltonian, which allows the neural network to learn the preferred polarization of the nucleus within the given magnetic field.
doi_str_mv 10.1103/PhysRevLett.133.142501
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2473970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118303623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-224c2c69a8d34acb260da1dcad9f2f9aaa1ee9894c62bb900ee208bbecfff76f3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EgvL4BWSxYpPisUMSL3mUh1SVN1vLccbU4CQQO0X8PakKiNXM4twZ3UPIPrAxABNHt_OvcI-LKcY4BiHGkPJjBmtkBCyXSQ6QrpMRYwISyVi-RbZDeGWMAc-KTbIlZMpFCvmIPJ-7EJ33rnmhcY50EgI20WlPJx7rYQ20tXTWG4-6o6euqZbkwmk6w77TPplh_Gy7N3rX6yb2NX2IOmLYJRtW-4B7P3OHPF1MHs-ukunN5fXZyTQxPBMx4Tw13GRSF5VItSl5xioNldGVtNxKrTUgykKmJuNlOTRB5KwoSzTW2jyzYoccrO62QwsVjIto5qZtGjRR8TQXMmcDdLiC3rv2o8cQVe2CQe91g20flAAoBBMZFwOarVDTtSF0aNV752rdfSlgaile_ROvBvFqJX4I7v_86Msaq7_Yr2nxDSdHgyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118303623</pqid></control><display><type>article</type><title>Distilling the Essential Elements of Nuclear Binding via Neural-Network Quantum States</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gnech, Alex ; Fore, Bryce ; Tropiano, Anthony J ; Lovato, Alessandro</creator><creatorcontrib>Gnech, Alex ; Fore, Bryce ; Tropiano, Anthony J ; Lovato, Alessandro</creatorcontrib><description>To distill the essential elements of nuclear binding, we seek the simplest Hamiltonian capable of modeling atomic nuclei with percent-level accuracy. A critical aspect of this endeavor consists of accurately solving the quantum many-body problem without incurring an exponential computing cost with the number of nucleons. We address this challenge by leveraging a variational Monte Carlo method based on a highly expressive neural-network quantum state ansatz. In addition to computing binding energies and charge radii of nuclei with up to A=20 nucleons, by evaluating their magnetic moments, we demonstrate that neural-network quantum states are able to correctly capture the self-emerging nuclear shell structure. To this end, we introduce a novel computational protocol based on adding an external magnetic field to the nuclear Hamiltonian, which allows the neural network to learn the preferred polarization of the nucleus within the given magnetic field.</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.133.142501</identifier><identifier>PMID: 39423417</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><ispartof>Physical review letters, 2024-10, Vol.133 (14), p.142501, Article 142501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-224c2c69a8d34acb260da1dcad9f2f9aaa1ee9894c62bb900ee208bbecfff76f3</cites><orcidid>0000-0002-2194-4954 ; 0000-0003-4652-5833 ; 0000-0002-2077-3866 ; 0000-0003-1136-3942 ; 0000000220773866 ; 0000000221944954 ; 0000000311363942 ; 0000000346525833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39423417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2473970$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gnech, Alex</creatorcontrib><creatorcontrib>Fore, Bryce</creatorcontrib><creatorcontrib>Tropiano, Anthony J</creatorcontrib><creatorcontrib>Lovato, Alessandro</creatorcontrib><title>Distilling the Essential Elements of Nuclear Binding via Neural-Network Quantum States</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>To distill the essential elements of nuclear binding, we seek the simplest Hamiltonian capable of modeling atomic nuclei with percent-level accuracy. A critical aspect of this endeavor consists of accurately solving the quantum many-body problem without incurring an exponential computing cost with the number of nucleons. We address this challenge by leveraging a variational Monte Carlo method based on a highly expressive neural-network quantum state ansatz. In addition to computing binding energies and charge radii of nuclei with up to A=20 nucleons, by evaluating their magnetic moments, we demonstrate that neural-network quantum states are able to correctly capture the self-emerging nuclear shell structure. To this end, we introduce a novel computational protocol based on adding an external magnetic field to the nuclear Hamiltonian, which allows the neural network to learn the preferred polarization of the nucleus within the given magnetic field.</description><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EgvL4BWSxYpPisUMSL3mUh1SVN1vLccbU4CQQO0X8PakKiNXM4twZ3UPIPrAxABNHt_OvcI-LKcY4BiHGkPJjBmtkBCyXSQ6QrpMRYwISyVi-RbZDeGWMAc-KTbIlZMpFCvmIPJ-7EJ33rnmhcY50EgI20WlPJx7rYQ20tXTWG4-6o6euqZbkwmk6w77TPplh_Gy7N3rX6yb2NX2IOmLYJRtW-4B7P3OHPF1MHs-ukunN5fXZyTQxPBMx4Tw13GRSF5VItSl5xioNldGVtNxKrTUgykKmJuNlOTRB5KwoSzTW2jyzYoccrO62QwsVjIto5qZtGjRR8TQXMmcDdLiC3rv2o8cQVe2CQe91g20flAAoBBMZFwOarVDTtSF0aNV752rdfSlgaile_ROvBvFqJX4I7v_86Msaq7_Yr2nxDSdHgyA</recordid><startdate>20241004</startdate><enddate>20241004</enddate><creator>Gnech, Alex</creator><creator>Fore, Bryce</creator><creator>Tropiano, Anthony J</creator><creator>Lovato, Alessandro</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2194-4954</orcidid><orcidid>https://orcid.org/0000-0003-4652-5833</orcidid><orcidid>https://orcid.org/0000-0002-2077-3866</orcidid><orcidid>https://orcid.org/0000-0003-1136-3942</orcidid><orcidid>https://orcid.org/0000000220773866</orcidid><orcidid>https://orcid.org/0000000221944954</orcidid><orcidid>https://orcid.org/0000000311363942</orcidid><orcidid>https://orcid.org/0000000346525833</orcidid></search><sort><creationdate>20241004</creationdate><title>Distilling the Essential Elements of Nuclear Binding via Neural-Network Quantum States</title><author>Gnech, Alex ; Fore, Bryce ; Tropiano, Anthony J ; Lovato, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-224c2c69a8d34acb260da1dcad9f2f9aaa1ee9894c62bb900ee208bbecfff76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnech, Alex</creatorcontrib><creatorcontrib>Fore, Bryce</creatorcontrib><creatorcontrib>Tropiano, Anthony J</creatorcontrib><creatorcontrib>Lovato, Alessandro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnech, Alex</au><au>Fore, Bryce</au><au>Tropiano, Anthony J</au><au>Lovato, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distilling the Essential Elements of Nuclear Binding via Neural-Network Quantum States</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2024-10-04</date><risdate>2024</risdate><volume>133</volume><issue>14</issue><spage>142501</spage><pages>142501-</pages><artnum>142501</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>To distill the essential elements of nuclear binding, we seek the simplest Hamiltonian capable of modeling atomic nuclei with percent-level accuracy. A critical aspect of this endeavor consists of accurately solving the quantum many-body problem without incurring an exponential computing cost with the number of nucleons. We address this challenge by leveraging a variational Monte Carlo method based on a highly expressive neural-network quantum state ansatz. In addition to computing binding energies and charge radii of nuclei with up to A=20 nucleons, by evaluating their magnetic moments, we demonstrate that neural-network quantum states are able to correctly capture the self-emerging nuclear shell structure. To this end, we introduce a novel computational protocol based on adding an external magnetic field to the nuclear Hamiltonian, which allows the neural network to learn the preferred polarization of the nucleus within the given magnetic field.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>39423417</pmid><doi>10.1103/PhysRevLett.133.142501</doi><orcidid>https://orcid.org/0000-0002-2194-4954</orcidid><orcidid>https://orcid.org/0000-0003-4652-5833</orcidid><orcidid>https://orcid.org/0000-0002-2077-3866</orcidid><orcidid>https://orcid.org/0000-0003-1136-3942</orcidid><orcidid>https://orcid.org/0000000220773866</orcidid><orcidid>https://orcid.org/0000000221944954</orcidid><orcidid>https://orcid.org/0000000311363942</orcidid><orcidid>https://orcid.org/0000000346525833</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2024-10, Vol.133 (14), p.142501, Article 142501
issn 0031-9007
1079-7114
1079-7114
language eng
recordid cdi_osti_scitechconnect_2473970
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
title Distilling the Essential Elements of Nuclear Binding via Neural-Network Quantum States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distilling%20the%20Essential%20Elements%20of%20Nuclear%20Binding%20via%20Neural-Network%20Quantum%20States&rft.jtitle=Physical%20review%20letters&rft.au=Gnech,%20Alex&rft.date=2024-10-04&rft.volume=133&rft.issue=14&rft.spage=142501&rft.pages=142501-&rft.artnum=142501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.133.142501&rft_dat=%3Cproquest_osti_%3E3118303623%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118303623&rft_id=info:pmid/39423417&rfr_iscdi=true