Giant energy storage and power density negative capacitance superlattices
Dielectric electrostatic capacitors 1 , because of their ultrafast charge–discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-05, Vol.629 (8013), p.803-809 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 809 |
---|---|
container_issue | 8013 |
container_start_page | 803 |
container_title | Nature (London) |
container_volume | 629 |
creator | Cheema, Suraj S. Shanker, Nirmaan Hsu, Shang-Lin Schaadt, Joseph Ellis, Nathan M. Cook, Matthew Rastogi, Ravi Pilawa-Podgurski, Robert C. N. Ciston, Jim Mohamed, Mohamed Salahuddin, Sayeef |
description | Dielectric electrostatic capacitors
1
, because of their ultrafast charge–discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems
2
–
5
. Moreover, state-of-the-art miniaturized electrochemical energy storage systems—microsupercapacitors and microbatteries—currently face safety, packaging, materials and microfabrication challenges preventing on-chip technological readiness
2
,
3
,
6
, leaving an opportunity for electrostatic microcapacitors. Here we report record-high electrostatic energy storage density (ESD) and power density, to our knowledge, in HfO
2
–ZrO
2
-based thin film microcapacitors integrated into silicon, through a three-pronged approach. First, to increase intrinsic energy storage, atomic-layer-deposited antiferroelectric HfO
2
–ZrO
2
films are engineered near a field-driven ferroelectric phase transition to exhibit amplified charge storage by the negative capacitance effect
7
–
12
, which enhances volumetric ESD beyond the best-known back-end-of-the-line-compatible dielectrics (115 J cm
−3
) (ref.
13
). Second, to increase total energy storage, antiferroelectric superlattice engineering
14
scales the energy storage performance beyond the conventional thickness limitations of HfO
2
–ZrO
2
-based (anti)ferroelectricity
15
(100-nm regime). Third, to increase the storage per footprint, the superlattices are conformally integrated into three-dimensional capacitors, which boosts the areal ESD nine times and the areal power density 170 times that of the best-known electrostatic capacitors: 80 mJ cm
−2
and 300 kW cm
−2
, respectively. This simultaneous demonstration of ultrahigh energy density and power density overcomes the traditional capacity–speed trade-off across the electrostatic–electrochemical energy storage hierarchy
1
,
16
. Furthermore, the integration of ultrahigh-density and ultrafast-charging thin films within a back-end-of-the-line-compatible process enables monolithic integration of on-chip microcapacitors
5
, which can unlock substantial energy storage and power delivery performance for electronic microsystems
17
–
19
.
Using a three-pronged approach — spanning field-driven negative capacitance stabilization to increase intrinsic energy storage, antiferroelectric superlattice engineering to increase total energy storage, and conformal three-dimensional deposition |
doi_str_mv | 10.1038/s41586-024-07365-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2473042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035539447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-545b0007ff1e79af81267b83258fbe7842d8a90901cf279433475367ab29fe303</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EosvCH-CAIrhwCYw9_soRVVAqVeqlPVuOd7Kk2nWC7YD239clBSQOnHyYZx7PzMvYaw4fOKD9mCVXVrcgZAsGtWrVE7bh0uhWamuesg2AsC1Y1GfsRc53AKC4kc_ZGVrVodWwYZcXo4-loUhpf2pymZLfU-Pjrpmnn5SaHcU8llMTae_L-IOa4GcfxuJjoCYvM6WDL2UMlF-yZ4M_ZHr1-G7Z7ZfPN-df26vri8vzT1dtQIWlVVL1dRAzDJxM5wfLhTa9RaHs0JOxUuys76ADHgZhOokojUJtfC-6gRBwy96u3imX0eU6C4VvYYqRQnFCGgQpKvR-heY0fV8oF3ccc6DDwUealuyqRynsZMW37N0_6N20pFhXqJSuMkDxIBQrFdKUc6LBzWk8-nRyHNxDGm5Nw9U03K80nKpNbx7VS3-k3Z-W3-evAK5ArqW4p_T37_9o7wFswJMI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060420322</pqid></control><display><type>article</type><title>Giant energy storage and power density negative capacitance superlattices</title><source>Nature Publishing Group</source><source>Alma/SFX Local Collection</source><creator>Cheema, Suraj S. ; Shanker, Nirmaan ; Hsu, Shang-Lin ; Schaadt, Joseph ; Ellis, Nathan M. ; Cook, Matthew ; Rastogi, Ravi ; Pilawa-Podgurski, Robert C. N. ; Ciston, Jim ; Mohamed, Mohamed ; Salahuddin, Sayeef</creator><creatorcontrib>Cheema, Suraj S. ; Shanker, Nirmaan ; Hsu, Shang-Lin ; Schaadt, Joseph ; Ellis, Nathan M. ; Cook, Matthew ; Rastogi, Ravi ; Pilawa-Podgurski, Robert C. N. ; Ciston, Jim ; Mohamed, Mohamed ; Salahuddin, Sayeef ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Dielectric electrostatic capacitors
1
, because of their ultrafast charge–discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems
2
–
5
. Moreover, state-of-the-art miniaturized electrochemical energy storage systems—microsupercapacitors and microbatteries—currently face safety, packaging, materials and microfabrication challenges preventing on-chip technological readiness
2
,
3
,
6
, leaving an opportunity for electrostatic microcapacitors. Here we report record-high electrostatic energy storage density (ESD) and power density, to our knowledge, in HfO
2
–ZrO
2
-based thin film microcapacitors integrated into silicon, through a three-pronged approach. First, to increase intrinsic energy storage, atomic-layer-deposited antiferroelectric HfO
2
–ZrO
2
films are engineered near a field-driven ferroelectric phase transition to exhibit amplified charge storage by the negative capacitance effect
7
–
12
, which enhances volumetric ESD beyond the best-known back-end-of-the-line-compatible dielectrics (115 J cm
−3
) (ref.
13
). Second, to increase total energy storage, antiferroelectric superlattice engineering
14
scales the energy storage performance beyond the conventional thickness limitations of HfO
2
–ZrO
2
-based (anti)ferroelectricity
15
(100-nm regime). Third, to increase the storage per footprint, the superlattices are conformally integrated into three-dimensional capacitors, which boosts the areal ESD nine times and the areal power density 170 times that of the best-known electrostatic capacitors: 80 mJ cm
−2
and 300 kW cm
−2
, respectively. This simultaneous demonstration of ultrahigh energy density and power density overcomes the traditional capacity–speed trade-off across the electrostatic–electrochemical energy storage hierarchy
1
,
16
. Furthermore, the integration of ultrahigh-density and ultrafast-charging thin films within a back-end-of-the-line-compatible process enables monolithic integration of on-chip microcapacitors
5
, which can unlock substantial energy storage and power delivery performance for electronic microsystems
17
–
19
.
Using a three-pronged approach — spanning field-driven negative capacitance stabilization to increase intrinsic energy storage, antiferroelectric superlattice engineering to increase total energy storage, and conformal three-dimensional deposition to increase areal energy storage density — very high electrostatic energy storage density and power density are reported in HfO
2
–ZrO
2
-based thin film microcapacitors integrated into silicon.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07365-5</identifier><identifier>PMID: 38593860</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/1005/1007 ; 639/4077/4079/4105 ; 639/766/119/996 ; 639/925/357/995 ; Antiferroelectricity ; Capacitance ; Capacitors ; Electric power ; Electricity generation ; Electrochemistry ; Electrostatic discharges ; ENERGY STORAGE ; Hafnium oxide ; Humanities and Social Sciences ; Integration ; Microbatteries ; multidisciplinary ; Phase transitions ; Science ; Science (multidisciplinary) ; Semiconductors ; Silicon ; Storage systems ; Superlattices ; Thin films ; Zirconium dioxide</subject><ispartof>Nature (London), 2024-05, Vol.629 (8013), p.803-809</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group May 23, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-545b0007ff1e79af81267b83258fbe7842d8a90901cf279433475367ab29fe303</cites><orcidid>0000-0002-8774-5747 ; 0000-0002-4102-9665 ; 0000-0003-0482-9978 ; 0000-0001-5878-3624 ; 0000000304829978 ; 0000000158783624 ; 0000000241029665 ; 0000000287745747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2473042$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheema, Suraj S.</creatorcontrib><creatorcontrib>Shanker, Nirmaan</creatorcontrib><creatorcontrib>Hsu, Shang-Lin</creatorcontrib><creatorcontrib>Schaadt, Joseph</creatorcontrib><creatorcontrib>Ellis, Nathan M.</creatorcontrib><creatorcontrib>Cook, Matthew</creatorcontrib><creatorcontrib>Rastogi, Ravi</creatorcontrib><creatorcontrib>Pilawa-Podgurski, Robert C. N.</creatorcontrib><creatorcontrib>Ciston, Jim</creatorcontrib><creatorcontrib>Mohamed, Mohamed</creatorcontrib><creatorcontrib>Salahuddin, Sayeef</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Giant energy storage and power density negative capacitance superlattices</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Dielectric electrostatic capacitors
1
, because of their ultrafast charge–discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems
2
–
5
. Moreover, state-of-the-art miniaturized electrochemical energy storage systems—microsupercapacitors and microbatteries—currently face safety, packaging, materials and microfabrication challenges preventing on-chip technological readiness
2
,
3
,
6
, leaving an opportunity for electrostatic microcapacitors. Here we report record-high electrostatic energy storage density (ESD) and power density, to our knowledge, in HfO
2
–ZrO
2
-based thin film microcapacitors integrated into silicon, through a three-pronged approach. First, to increase intrinsic energy storage, atomic-layer-deposited antiferroelectric HfO
2
–ZrO
2
films are engineered near a field-driven ferroelectric phase transition to exhibit amplified charge storage by the negative capacitance effect
7
–
12
, which enhances volumetric ESD beyond the best-known back-end-of-the-line-compatible dielectrics (115 J cm
−3
) (ref.
13
). Second, to increase total energy storage, antiferroelectric superlattice engineering
14
scales the energy storage performance beyond the conventional thickness limitations of HfO
2
–ZrO
2
-based (anti)ferroelectricity
15
(100-nm regime). Third, to increase the storage per footprint, the superlattices are conformally integrated into three-dimensional capacitors, which boosts the areal ESD nine times and the areal power density 170 times that of the best-known electrostatic capacitors: 80 mJ cm
−2
and 300 kW cm
−2
, respectively. This simultaneous demonstration of ultrahigh energy density and power density overcomes the traditional capacity–speed trade-off across the electrostatic–electrochemical energy storage hierarchy
1
,
16
. Furthermore, the integration of ultrahigh-density and ultrafast-charging thin films within a back-end-of-the-line-compatible process enables monolithic integration of on-chip microcapacitors
5
, which can unlock substantial energy storage and power delivery performance for electronic microsystems
17
–
19
.
Using a three-pronged approach — spanning field-driven negative capacitance stabilization to increase intrinsic energy storage, antiferroelectric superlattice engineering to increase total energy storage, and conformal three-dimensional deposition to increase areal energy storage density — very high electrostatic energy storage density and power density are reported in HfO
2
–ZrO
2
-based thin film microcapacitors integrated into silicon.</description><subject>639/166/987</subject><subject>639/301/1005/1007</subject><subject>639/4077/4079/4105</subject><subject>639/766/119/996</subject><subject>639/925/357/995</subject><subject>Antiferroelectricity</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Electric power</subject><subject>Electricity generation</subject><subject>Electrochemistry</subject><subject>Electrostatic discharges</subject><subject>ENERGY STORAGE</subject><subject>Hafnium oxide</subject><subject>Humanities and Social Sciences</subject><subject>Integration</subject><subject>Microbatteries</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Storage systems</subject><subject>Superlattices</subject><subject>Thin films</subject><subject>Zirconium dioxide</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EosvCH-CAIrhwCYw9_soRVVAqVeqlPVuOd7Kk2nWC7YD239clBSQOnHyYZx7PzMvYaw4fOKD9mCVXVrcgZAsGtWrVE7bh0uhWamuesg2AsC1Y1GfsRc53AKC4kc_ZGVrVodWwYZcXo4-loUhpf2pymZLfU-Pjrpmnn5SaHcU8llMTae_L-IOa4GcfxuJjoCYvM6WDL2UMlF-yZ4M_ZHr1-G7Z7ZfPN-df26vri8vzT1dtQIWlVVL1dRAzDJxM5wfLhTa9RaHs0JOxUuys76ADHgZhOokojUJtfC-6gRBwy96u3imX0eU6C4VvYYqRQnFCGgQpKvR-heY0fV8oF3ccc6DDwUealuyqRynsZMW37N0_6N20pFhXqJSuMkDxIBQrFdKUc6LBzWk8-nRyHNxDGm5Nw9U03K80nKpNbx7VS3-k3Z-W3-evAK5ArqW4p_T37_9o7wFswJMI</recordid><startdate>20240523</startdate><enddate>20240523</enddate><creator>Cheema, Suraj S.</creator><creator>Shanker, Nirmaan</creator><creator>Hsu, Shang-Lin</creator><creator>Schaadt, Joseph</creator><creator>Ellis, Nathan M.</creator><creator>Cook, Matthew</creator><creator>Rastogi, Ravi</creator><creator>Pilawa-Podgurski, Robert C. N.</creator><creator>Ciston, Jim</creator><creator>Mohamed, Mohamed</creator><creator>Salahuddin, Sayeef</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8774-5747</orcidid><orcidid>https://orcid.org/0000-0002-4102-9665</orcidid><orcidid>https://orcid.org/0000-0003-0482-9978</orcidid><orcidid>https://orcid.org/0000-0001-5878-3624</orcidid><orcidid>https://orcid.org/0000000304829978</orcidid><orcidid>https://orcid.org/0000000158783624</orcidid><orcidid>https://orcid.org/0000000241029665</orcidid><orcidid>https://orcid.org/0000000287745747</orcidid></search><sort><creationdate>20240523</creationdate><title>Giant energy storage and power density negative capacitance superlattices</title><author>Cheema, Suraj S. ; Shanker, Nirmaan ; Hsu, Shang-Lin ; Schaadt, Joseph ; Ellis, Nathan M. ; Cook, Matthew ; Rastogi, Ravi ; Pilawa-Podgurski, Robert C. N. ; Ciston, Jim ; Mohamed, Mohamed ; Salahuddin, Sayeef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-545b0007ff1e79af81267b83258fbe7842d8a90901cf279433475367ab29fe303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/166/987</topic><topic>639/301/1005/1007</topic><topic>639/4077/4079/4105</topic><topic>639/766/119/996</topic><topic>639/925/357/995</topic><topic>Antiferroelectricity</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Electric power</topic><topic>Electricity generation</topic><topic>Electrochemistry</topic><topic>Electrostatic discharges</topic><topic>ENERGY STORAGE</topic><topic>Hafnium oxide</topic><topic>Humanities and Social Sciences</topic><topic>Integration</topic><topic>Microbatteries</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Storage systems</topic><topic>Superlattices</topic><topic>Thin films</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheema, Suraj S.</creatorcontrib><creatorcontrib>Shanker, Nirmaan</creatorcontrib><creatorcontrib>Hsu, Shang-Lin</creatorcontrib><creatorcontrib>Schaadt, Joseph</creatorcontrib><creatorcontrib>Ellis, Nathan M.</creatorcontrib><creatorcontrib>Cook, Matthew</creatorcontrib><creatorcontrib>Rastogi, Ravi</creatorcontrib><creatorcontrib>Pilawa-Podgurski, Robert C. N.</creatorcontrib><creatorcontrib>Ciston, Jim</creatorcontrib><creatorcontrib>Mohamed, Mohamed</creatorcontrib><creatorcontrib>Salahuddin, Sayeef</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheema, Suraj S.</au><au>Shanker, Nirmaan</au><au>Hsu, Shang-Lin</au><au>Schaadt, Joseph</au><au>Ellis, Nathan M.</au><au>Cook, Matthew</au><au>Rastogi, Ravi</au><au>Pilawa-Podgurski, Robert C. N.</au><au>Ciston, Jim</au><au>Mohamed, Mohamed</au><au>Salahuddin, Sayeef</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant energy storage and power density negative capacitance superlattices</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-05-23</date><risdate>2024</risdate><volume>629</volume><issue>8013</issue><spage>803</spage><epage>809</epage><pages>803-809</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Dielectric electrostatic capacitors
1
, because of their ultrafast charge–discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems
2
–
5
. Moreover, state-of-the-art miniaturized electrochemical energy storage systems—microsupercapacitors and microbatteries—currently face safety, packaging, materials and microfabrication challenges preventing on-chip technological readiness
2
,
3
,
6
, leaving an opportunity for electrostatic microcapacitors. Here we report record-high electrostatic energy storage density (ESD) and power density, to our knowledge, in HfO
2
–ZrO
2
-based thin film microcapacitors integrated into silicon, through a three-pronged approach. First, to increase intrinsic energy storage, atomic-layer-deposited antiferroelectric HfO
2
–ZrO
2
films are engineered near a field-driven ferroelectric phase transition to exhibit amplified charge storage by the negative capacitance effect
7
–
12
, which enhances volumetric ESD beyond the best-known back-end-of-the-line-compatible dielectrics (115 J cm
−3
) (ref.
13
). Second, to increase total energy storage, antiferroelectric superlattice engineering
14
scales the energy storage performance beyond the conventional thickness limitations of HfO
2
–ZrO
2
-based (anti)ferroelectricity
15
(100-nm regime). Third, to increase the storage per footprint, the superlattices are conformally integrated into three-dimensional capacitors, which boosts the areal ESD nine times and the areal power density 170 times that of the best-known electrostatic capacitors: 80 mJ cm
−2
and 300 kW cm
−2
, respectively. This simultaneous demonstration of ultrahigh energy density and power density overcomes the traditional capacity–speed trade-off across the electrostatic–electrochemical energy storage hierarchy
1
,
16
. Furthermore, the integration of ultrahigh-density and ultrafast-charging thin films within a back-end-of-the-line-compatible process enables monolithic integration of on-chip microcapacitors
5
, which can unlock substantial energy storage and power delivery performance for electronic microsystems
17
–
19
.
Using a three-pronged approach — spanning field-driven negative capacitance stabilization to increase intrinsic energy storage, antiferroelectric superlattice engineering to increase total energy storage, and conformal three-dimensional deposition to increase areal energy storage density — very high electrostatic energy storage density and power density are reported in HfO
2
–ZrO
2
-based thin film microcapacitors integrated into silicon.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38593860</pmid><doi>10.1038/s41586-024-07365-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8774-5747</orcidid><orcidid>https://orcid.org/0000-0002-4102-9665</orcidid><orcidid>https://orcid.org/0000-0003-0482-9978</orcidid><orcidid>https://orcid.org/0000-0001-5878-3624</orcidid><orcidid>https://orcid.org/0000000304829978</orcidid><orcidid>https://orcid.org/0000000158783624</orcidid><orcidid>https://orcid.org/0000000241029665</orcidid><orcidid>https://orcid.org/0000000287745747</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-05, Vol.629 (8013), p.803-809 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_2473042 |
source | Nature Publishing Group; Alma/SFX Local Collection |
subjects | 639/166/987 639/301/1005/1007 639/4077/4079/4105 639/766/119/996 639/925/357/995 Antiferroelectricity Capacitance Capacitors Electric power Electricity generation Electrochemistry Electrostatic discharges ENERGY STORAGE Hafnium oxide Humanities and Social Sciences Integration Microbatteries multidisciplinary Phase transitions Science Science (multidisciplinary) Semiconductors Silicon Storage systems Superlattices Thin films Zirconium dioxide |
title | Giant energy storage and power density negative capacitance superlattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T15%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20energy%20storage%20and%20power%20density%20negative%20capacitance%20superlattices&rft.jtitle=Nature%20(London)&rft.au=Cheema,%20Suraj%20S.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2024-05-23&rft.volume=629&rft.issue=8013&rft.spage=803&rft.epage=809&rft.pages=803-809&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07365-5&rft_dat=%3Cproquest_osti_%3E3035539447%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060420322&rft_id=info:pmid/38593860&rfr_iscdi=true |