Giant energy storage and power density negative capacitance superlattices

Dielectric electrostatic capacitors 1 , because of their ultrafast charge–discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-05, Vol.629 (8013), p.803-809
Hauptverfasser: Cheema, Suraj S., Shanker, Nirmaan, Hsu, Shang-Lin, Schaadt, Joseph, Ellis, Nathan M., Cook, Matthew, Rastogi, Ravi, Pilawa-Podgurski, Robert C. N., Ciston, Jim, Mohamed, Mohamed, Salahuddin, Sayeef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 809
container_issue 8013
container_start_page 803
container_title Nature (London)
container_volume 629
creator Cheema, Suraj S.
Shanker, Nirmaan
Hsu, Shang-Lin
Schaadt, Joseph
Ellis, Nathan M.
Cook, Matthew
Rastogi, Ravi
Pilawa-Podgurski, Robert C. N.
Ciston, Jim
Mohamed, Mohamed
Salahuddin, Sayeef
description Dielectric electrostatic capacitors 1 , because of their ultrafast charge–discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems 2 – 5 . Moreover, state-of-the-art miniaturized electrochemical energy storage systems—microsupercapacitors and microbatteries—currently face safety, packaging, materials and microfabrication challenges preventing on-chip technological readiness 2 , 3 , 6 , leaving an opportunity for electrostatic microcapacitors. Here we report record-high electrostatic energy storage density (ESD) and power density, to our knowledge, in HfO 2 –ZrO 2 -based thin film microcapacitors integrated into silicon, through a three-pronged approach. First, to increase intrinsic energy storage, atomic-layer-deposited antiferroelectric HfO 2 –ZrO 2 films are engineered near a field-driven ferroelectric phase transition to exhibit amplified charge storage by the negative capacitance effect 7 – 12 , which enhances volumetric ESD beyond the best-known back-end-of-the-line-compatible dielectrics (115 J cm −3 ) (ref.  13 ). Second, to increase total energy storage, antiferroelectric superlattice engineering 14 scales the energy storage performance beyond the conventional thickness limitations of HfO 2 –ZrO 2 -based (anti)ferroelectricity 15 (100-nm regime). Third, to increase the storage per footprint, the superlattices are conformally integrated into three-dimensional capacitors, which boosts the areal ESD nine times and the areal power density 170 times that of the best-known electrostatic capacitors: 80 mJ cm −2 and 300 kW cm −2 , respectively. This simultaneous demonstration of ultrahigh energy density and power density overcomes the traditional capacity–speed trade-off across the electrostatic–electrochemical energy storage hierarchy 1 , 16 . Furthermore, the integration of ultrahigh-density and ultrafast-charging thin films within a back-end-of-the-line-compatible process enables monolithic integration of on-chip microcapacitors 5 , which can unlock substantial energy storage and power delivery performance for electronic microsystems 17 – 19 . Using a three-pronged approach — spanning field-driven negative capacitance stabilization to increase intrinsic energy storage, antiferroelectric superlattice engineering to increase total energy storage, and conformal three-dimensional deposition
doi_str_mv 10.1038/s41586-024-07365-5
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2473042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035539447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-545b0007ff1e79af81267b83258fbe7842d8a90901cf279433475367ab29fe303</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EosvCH-CAIrhwCYw9_soRVVAqVeqlPVuOd7Kk2nWC7YD239clBSQOnHyYZx7PzMvYaw4fOKD9mCVXVrcgZAsGtWrVE7bh0uhWamuesg2AsC1Y1GfsRc53AKC4kc_ZGVrVodWwYZcXo4-loUhpf2pymZLfU-Pjrpmnn5SaHcU8llMTae_L-IOa4GcfxuJjoCYvM6WDL2UMlF-yZ4M_ZHr1-G7Z7ZfPN-df26vri8vzT1dtQIWlVVL1dRAzDJxM5wfLhTa9RaHs0JOxUuys76ADHgZhOokojUJtfC-6gRBwy96u3imX0eU6C4VvYYqRQnFCGgQpKvR-heY0fV8oF3ccc6DDwUealuyqRynsZMW37N0_6N20pFhXqJSuMkDxIBQrFdKUc6LBzWk8-nRyHNxDGm5Nw9U03K80nKpNbx7VS3-k3Z-W3-evAK5ArqW4p_T37_9o7wFswJMI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060420322</pqid></control><display><type>article</type><title>Giant energy storage and power density negative capacitance superlattices</title><source>Nature Publishing Group</source><source>Alma/SFX Local Collection</source><creator>Cheema, Suraj S. ; Shanker, Nirmaan ; Hsu, Shang-Lin ; Schaadt, Joseph ; Ellis, Nathan M. ; Cook, Matthew ; Rastogi, Ravi ; Pilawa-Podgurski, Robert C. N. ; Ciston, Jim ; Mohamed, Mohamed ; Salahuddin, Sayeef</creator><creatorcontrib>Cheema, Suraj S. ; Shanker, Nirmaan ; Hsu, Shang-Lin ; Schaadt, Joseph ; Ellis, Nathan M. ; Cook, Matthew ; Rastogi, Ravi ; Pilawa-Podgurski, Robert C. N. ; Ciston, Jim ; Mohamed, Mohamed ; Salahuddin, Sayeef ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Dielectric electrostatic capacitors 1 , because of their ultrafast charge–discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems 2 – 5 . Moreover, state-of-the-art miniaturized electrochemical energy storage systems—microsupercapacitors and microbatteries—currently face safety, packaging, materials and microfabrication challenges preventing on-chip technological readiness 2 , 3 , 6 , leaving an opportunity for electrostatic microcapacitors. Here we report record-high electrostatic energy storage density (ESD) and power density, to our knowledge, in HfO 2 –ZrO 2 -based thin film microcapacitors integrated into silicon, through a three-pronged approach. First, to increase intrinsic energy storage, atomic-layer-deposited antiferroelectric HfO 2 –ZrO 2 films are engineered near a field-driven ferroelectric phase transition to exhibit amplified charge storage by the negative capacitance effect 7 – 12 , which enhances volumetric ESD beyond the best-known back-end-of-the-line-compatible dielectrics (115 J cm −3 ) (ref.  13 ). Second, to increase total energy storage, antiferroelectric superlattice engineering 14 scales the energy storage performance beyond the conventional thickness limitations of HfO 2 –ZrO 2 -based (anti)ferroelectricity 15 (100-nm regime). Third, to increase the storage per footprint, the superlattices are conformally integrated into three-dimensional capacitors, which boosts the areal ESD nine times and the areal power density 170 times that of the best-known electrostatic capacitors: 80 mJ cm −2 and 300 kW cm −2 , respectively. This simultaneous demonstration of ultrahigh energy density and power density overcomes the traditional capacity–speed trade-off across the electrostatic–electrochemical energy storage hierarchy 1 , 16 . Furthermore, the integration of ultrahigh-density and ultrafast-charging thin films within a back-end-of-the-line-compatible process enables monolithic integration of on-chip microcapacitors 5 , which can unlock substantial energy storage and power delivery performance for electronic microsystems 17 – 19 . Using a three-pronged approach — spanning field-driven negative capacitance stabilization to increase intrinsic energy storage, antiferroelectric superlattice engineering to increase total energy storage, and conformal three-dimensional deposition to increase areal energy storage density — very high electrostatic energy storage density and power density are reported in HfO 2 –ZrO 2 -based thin film microcapacitors integrated into silicon.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07365-5</identifier><identifier>PMID: 38593860</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/1005/1007 ; 639/4077/4079/4105 ; 639/766/119/996 ; 639/925/357/995 ; Antiferroelectricity ; Capacitance ; Capacitors ; Electric power ; Electricity generation ; Electrochemistry ; Electrostatic discharges ; ENERGY STORAGE ; Hafnium oxide ; Humanities and Social Sciences ; Integration ; Microbatteries ; multidisciplinary ; Phase transitions ; Science ; Science (multidisciplinary) ; Semiconductors ; Silicon ; Storage systems ; Superlattices ; Thin films ; Zirconium dioxide</subject><ispartof>Nature (London), 2024-05, Vol.629 (8013), p.803-809</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group May 23, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-545b0007ff1e79af81267b83258fbe7842d8a90901cf279433475367ab29fe303</cites><orcidid>0000-0002-8774-5747 ; 0000-0002-4102-9665 ; 0000-0003-0482-9978 ; 0000-0001-5878-3624 ; 0000000304829978 ; 0000000158783624 ; 0000000241029665 ; 0000000287745747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2473042$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheema, Suraj S.</creatorcontrib><creatorcontrib>Shanker, Nirmaan</creatorcontrib><creatorcontrib>Hsu, Shang-Lin</creatorcontrib><creatorcontrib>Schaadt, Joseph</creatorcontrib><creatorcontrib>Ellis, Nathan M.</creatorcontrib><creatorcontrib>Cook, Matthew</creatorcontrib><creatorcontrib>Rastogi, Ravi</creatorcontrib><creatorcontrib>Pilawa-Podgurski, Robert C. N.</creatorcontrib><creatorcontrib>Ciston, Jim</creatorcontrib><creatorcontrib>Mohamed, Mohamed</creatorcontrib><creatorcontrib>Salahuddin, Sayeef</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Giant energy storage and power density negative capacitance superlattices</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Dielectric electrostatic capacitors 1 , because of their ultrafast charge–discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems 2 – 5 . Moreover, state-of-the-art miniaturized electrochemical energy storage systems—microsupercapacitors and microbatteries—currently face safety, packaging, materials and microfabrication challenges preventing on-chip technological readiness 2 , 3 , 6 , leaving an opportunity for electrostatic microcapacitors. Here we report record-high electrostatic energy storage density (ESD) and power density, to our knowledge, in HfO 2 –ZrO 2 -based thin film microcapacitors integrated into silicon, through a three-pronged approach. First, to increase intrinsic energy storage, atomic-layer-deposited antiferroelectric HfO 2 –ZrO 2 films are engineered near a field-driven ferroelectric phase transition to exhibit amplified charge storage by the negative capacitance effect 7 – 12 , which enhances volumetric ESD beyond the best-known back-end-of-the-line-compatible dielectrics (115 J cm −3 ) (ref.  13 ). Second, to increase total energy storage, antiferroelectric superlattice engineering 14 scales the energy storage performance beyond the conventional thickness limitations of HfO 2 –ZrO 2 -based (anti)ferroelectricity 15 (100-nm regime). Third, to increase the storage per footprint, the superlattices are conformally integrated into three-dimensional capacitors, which boosts the areal ESD nine times and the areal power density 170 times that of the best-known electrostatic capacitors: 80 mJ cm −2 and 300 kW cm −2 , respectively. This simultaneous demonstration of ultrahigh energy density and power density overcomes the traditional capacity–speed trade-off across the electrostatic–electrochemical energy storage hierarchy 1 , 16 . Furthermore, the integration of ultrahigh-density and ultrafast-charging thin films within a back-end-of-the-line-compatible process enables monolithic integration of on-chip microcapacitors 5 , which can unlock substantial energy storage and power delivery performance for electronic microsystems 17 – 19 . Using a three-pronged approach — spanning field-driven negative capacitance stabilization to increase intrinsic energy storage, antiferroelectric superlattice engineering to increase total energy storage, and conformal three-dimensional deposition to increase areal energy storage density — very high electrostatic energy storage density and power density are reported in HfO 2 –ZrO 2 -based thin film microcapacitors integrated into silicon.</description><subject>639/166/987</subject><subject>639/301/1005/1007</subject><subject>639/4077/4079/4105</subject><subject>639/766/119/996</subject><subject>639/925/357/995</subject><subject>Antiferroelectricity</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Electric power</subject><subject>Electricity generation</subject><subject>Electrochemistry</subject><subject>Electrostatic discharges</subject><subject>ENERGY STORAGE</subject><subject>Hafnium oxide</subject><subject>Humanities and Social Sciences</subject><subject>Integration</subject><subject>Microbatteries</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Storage systems</subject><subject>Superlattices</subject><subject>Thin films</subject><subject>Zirconium dioxide</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EosvCH-CAIrhwCYw9_soRVVAqVeqlPVuOd7Kk2nWC7YD239clBSQOnHyYZx7PzMvYaw4fOKD9mCVXVrcgZAsGtWrVE7bh0uhWamuesg2AsC1Y1GfsRc53AKC4kc_ZGVrVodWwYZcXo4-loUhpf2pymZLfU-Pjrpmnn5SaHcU8llMTae_L-IOa4GcfxuJjoCYvM6WDL2UMlF-yZ4M_ZHr1-G7Z7ZfPN-df26vri8vzT1dtQIWlVVL1dRAzDJxM5wfLhTa9RaHs0JOxUuys76ADHgZhOokojUJtfC-6gRBwy96u3imX0eU6C4VvYYqRQnFCGgQpKvR-heY0fV8oF3ccc6DDwUealuyqRynsZMW37N0_6N20pFhXqJSuMkDxIBQrFdKUc6LBzWk8-nRyHNxDGm5Nw9U03K80nKpNbx7VS3-k3Z-W3-evAK5ArqW4p_T37_9o7wFswJMI</recordid><startdate>20240523</startdate><enddate>20240523</enddate><creator>Cheema, Suraj S.</creator><creator>Shanker, Nirmaan</creator><creator>Hsu, Shang-Lin</creator><creator>Schaadt, Joseph</creator><creator>Ellis, Nathan M.</creator><creator>Cook, Matthew</creator><creator>Rastogi, Ravi</creator><creator>Pilawa-Podgurski, Robert C. N.</creator><creator>Ciston, Jim</creator><creator>Mohamed, Mohamed</creator><creator>Salahuddin, Sayeef</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8774-5747</orcidid><orcidid>https://orcid.org/0000-0002-4102-9665</orcidid><orcidid>https://orcid.org/0000-0003-0482-9978</orcidid><orcidid>https://orcid.org/0000-0001-5878-3624</orcidid><orcidid>https://orcid.org/0000000304829978</orcidid><orcidid>https://orcid.org/0000000158783624</orcidid><orcidid>https://orcid.org/0000000241029665</orcidid><orcidid>https://orcid.org/0000000287745747</orcidid></search><sort><creationdate>20240523</creationdate><title>Giant energy storage and power density negative capacitance superlattices</title><author>Cheema, Suraj S. ; Shanker, Nirmaan ; Hsu, Shang-Lin ; Schaadt, Joseph ; Ellis, Nathan M. ; Cook, Matthew ; Rastogi, Ravi ; Pilawa-Podgurski, Robert C. N. ; Ciston, Jim ; Mohamed, Mohamed ; Salahuddin, Sayeef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-545b0007ff1e79af81267b83258fbe7842d8a90901cf279433475367ab29fe303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/166/987</topic><topic>639/301/1005/1007</topic><topic>639/4077/4079/4105</topic><topic>639/766/119/996</topic><topic>639/925/357/995</topic><topic>Antiferroelectricity</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Electric power</topic><topic>Electricity generation</topic><topic>Electrochemistry</topic><topic>Electrostatic discharges</topic><topic>ENERGY STORAGE</topic><topic>Hafnium oxide</topic><topic>Humanities and Social Sciences</topic><topic>Integration</topic><topic>Microbatteries</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Storage systems</topic><topic>Superlattices</topic><topic>Thin films</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheema, Suraj S.</creatorcontrib><creatorcontrib>Shanker, Nirmaan</creatorcontrib><creatorcontrib>Hsu, Shang-Lin</creatorcontrib><creatorcontrib>Schaadt, Joseph</creatorcontrib><creatorcontrib>Ellis, Nathan M.</creatorcontrib><creatorcontrib>Cook, Matthew</creatorcontrib><creatorcontrib>Rastogi, Ravi</creatorcontrib><creatorcontrib>Pilawa-Podgurski, Robert C. N.</creatorcontrib><creatorcontrib>Ciston, Jim</creatorcontrib><creatorcontrib>Mohamed, Mohamed</creatorcontrib><creatorcontrib>Salahuddin, Sayeef</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheema, Suraj S.</au><au>Shanker, Nirmaan</au><au>Hsu, Shang-Lin</au><au>Schaadt, Joseph</au><au>Ellis, Nathan M.</au><au>Cook, Matthew</au><au>Rastogi, Ravi</au><au>Pilawa-Podgurski, Robert C. N.</au><au>Ciston, Jim</au><au>Mohamed, Mohamed</au><au>Salahuddin, Sayeef</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant energy storage and power density negative capacitance superlattices</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-05-23</date><risdate>2024</risdate><volume>629</volume><issue>8013</issue><spage>803</spage><epage>809</epage><pages>803-809</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Dielectric electrostatic capacitors 1 , because of their ultrafast charge–discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems 2 – 5 . Moreover, state-of-the-art miniaturized electrochemical energy storage systems—microsupercapacitors and microbatteries—currently face safety, packaging, materials and microfabrication challenges preventing on-chip technological readiness 2 , 3 , 6 , leaving an opportunity for electrostatic microcapacitors. Here we report record-high electrostatic energy storage density (ESD) and power density, to our knowledge, in HfO 2 –ZrO 2 -based thin film microcapacitors integrated into silicon, through a three-pronged approach. First, to increase intrinsic energy storage, atomic-layer-deposited antiferroelectric HfO 2 –ZrO 2 films are engineered near a field-driven ferroelectric phase transition to exhibit amplified charge storage by the negative capacitance effect 7 – 12 , which enhances volumetric ESD beyond the best-known back-end-of-the-line-compatible dielectrics (115 J cm −3 ) (ref.  13 ). Second, to increase total energy storage, antiferroelectric superlattice engineering 14 scales the energy storage performance beyond the conventional thickness limitations of HfO 2 –ZrO 2 -based (anti)ferroelectricity 15 (100-nm regime). Third, to increase the storage per footprint, the superlattices are conformally integrated into three-dimensional capacitors, which boosts the areal ESD nine times and the areal power density 170 times that of the best-known electrostatic capacitors: 80 mJ cm −2 and 300 kW cm −2 , respectively. This simultaneous demonstration of ultrahigh energy density and power density overcomes the traditional capacity–speed trade-off across the electrostatic–electrochemical energy storage hierarchy 1 , 16 . Furthermore, the integration of ultrahigh-density and ultrafast-charging thin films within a back-end-of-the-line-compatible process enables monolithic integration of on-chip microcapacitors 5 , which can unlock substantial energy storage and power delivery performance for electronic microsystems 17 – 19 . Using a three-pronged approach — spanning field-driven negative capacitance stabilization to increase intrinsic energy storage, antiferroelectric superlattice engineering to increase total energy storage, and conformal three-dimensional deposition to increase areal energy storage density — very high electrostatic energy storage density and power density are reported in HfO 2 –ZrO 2 -based thin film microcapacitors integrated into silicon.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38593860</pmid><doi>10.1038/s41586-024-07365-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8774-5747</orcidid><orcidid>https://orcid.org/0000-0002-4102-9665</orcidid><orcidid>https://orcid.org/0000-0003-0482-9978</orcidid><orcidid>https://orcid.org/0000-0001-5878-3624</orcidid><orcidid>https://orcid.org/0000000304829978</orcidid><orcidid>https://orcid.org/0000000158783624</orcidid><orcidid>https://orcid.org/0000000241029665</orcidid><orcidid>https://orcid.org/0000000287745747</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-05, Vol.629 (8013), p.803-809
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_2473042
source Nature Publishing Group; Alma/SFX Local Collection
subjects 639/166/987
639/301/1005/1007
639/4077/4079/4105
639/766/119/996
639/925/357/995
Antiferroelectricity
Capacitance
Capacitors
Electric power
Electricity generation
Electrochemistry
Electrostatic discharges
ENERGY STORAGE
Hafnium oxide
Humanities and Social Sciences
Integration
Microbatteries
multidisciplinary
Phase transitions
Science
Science (multidisciplinary)
Semiconductors
Silicon
Storage systems
Superlattices
Thin films
Zirconium dioxide
title Giant energy storage and power density negative capacitance superlattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T15%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20energy%20storage%20and%20power%20density%20negative%20capacitance%20superlattices&rft.jtitle=Nature%20(London)&rft.au=Cheema,%20Suraj%20S.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2024-05-23&rft.volume=629&rft.issue=8013&rft.spage=803&rft.epage=809&rft.pages=803-809&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07365-5&rft_dat=%3Cproquest_osti_%3E3035539447%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060420322&rft_id=info:pmid/38593860&rfr_iscdi=true