Achieving giant electrostrain of above 1% in (Bi,Na)TiO 3 -based lead-free piezoelectrics via introducing oxygen-defect composition
Piezoelectric ceramics have been extensively used in actuators, where the magnitude of electrostrain is key indicator for large-stroke actuation applications. Here, we propose an innovative strategy based on defect chemistry to form a defect-engineered morphotropic phase boundary and achieve a giant...
Gespeichert in:
Veröffentlicht in: | Science advances 2023-02, Vol.9 (5), p.eade7078 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | eade7078 |
container_title | Science advances |
container_volume | 9 |
creator | Luo, Huajie Liu, Hui Huang, Houbing Song, Yu Tucker, Matthew G Sun, Zheng Yao, Yonghao Gao, Baitao Ren, Yang Tang, Mingxue Qi, He Deng, Shiqing Zhang, Shujun Chen, Jun |
description | Piezoelectric ceramics have been extensively used in actuators, where the magnitude of electrostrain is key indicator for large-stroke actuation applications. Here, we propose an innovative strategy based on defect chemistry to form a defect-engineered morphotropic phase boundary and achieve a giant strain of 1.12% in lead-free Bi
Na
TiO
(BNT)-based ceramics. The incorporation of the hypothetical perovskite BaAlO
with nominal oxygen defect into BNT will form strongly polarized directional defect dipoles, leading to a strong pinning effect after aging. The large asymmetrical strain is mainly attributed to two factors: The defect dipoles along crystallographic [001] direction destroy the long-range ordering of the ferroelectric and activate a reversible phase transition while promoting polarization rotation when the dipoles are aligned along the applied electric field. Our results not only demonstrate the potential application of BNT-based materials in low-frequency, large-stroke actuators but also provide a general methodology to achieve large strain. |
doi_str_mv | 10.1126/sciadv.ade7078 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2470187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36735779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1748-5fad131eea2aa38b963efe4409fcd94e24387a9372198df9f8e2ddff516330dc3</originalsourceid><addsrcrecordid>eNpNkM9LwzAYhoMobsxdPUoQBAU7kyZt2uMc_oLhLvNc0uTLFtma0nTFefUfN6MqnvIFnvfl-x6EzimZUBqnd15ZqbuJ1CCIyI7QMGYiieKEZ8f_5gEae_9OCKE8TROan6IBSwVLhMiH6Guq1hY6W63wysqqxbAB1TbOt420FXYGy9J1gOkVDt_re3v7Km-WdoEZjkrpQeMNSB2ZBgDXFj5dn7fK487KkAldeqcO_e5jv4Iq0mACgZXb1s7b1rrqDJ0YufEw_nlH6O3xYTl7juaLp5fZdB4pKngWJUZqyiiAjKVkWZmnLFRxTnKjdM4h5iwTMmcipnmmTW4yiLU2JqEpY0QrNkKXfW-4zhZBXgtqrVxVhX2KmAtCMxGgSQ-pIME3YIq6sVvZ7AtKioP1orde_FgPgYs-UO_KLeg__Ncx-wb27YCr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Achieving giant electrostrain of above 1% in (Bi,Na)TiO 3 -based lead-free piezoelectrics via introducing oxygen-defect composition</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Luo, Huajie ; Liu, Hui ; Huang, Houbing ; Song, Yu ; Tucker, Matthew G ; Sun, Zheng ; Yao, Yonghao ; Gao, Baitao ; Ren, Yang ; Tang, Mingxue ; Qi, He ; Deng, Shiqing ; Zhang, Shujun ; Chen, Jun</creator><creatorcontrib>Luo, Huajie ; Liu, Hui ; Huang, Houbing ; Song, Yu ; Tucker, Matthew G ; Sun, Zheng ; Yao, Yonghao ; Gao, Baitao ; Ren, Yang ; Tang, Mingxue ; Qi, He ; Deng, Shiqing ; Zhang, Shujun ; Chen, Jun ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Piezoelectric ceramics have been extensively used in actuators, where the magnitude of electrostrain is key indicator for large-stroke actuation applications. Here, we propose an innovative strategy based on defect chemistry to form a defect-engineered morphotropic phase boundary and achieve a giant strain of 1.12% in lead-free Bi
Na
TiO
(BNT)-based ceramics. The incorporation of the hypothetical perovskite BaAlO
with nominal oxygen defect into BNT will form strongly polarized directional defect dipoles, leading to a strong pinning effect after aging. The large asymmetrical strain is mainly attributed to two factors: The defect dipoles along crystallographic [001] direction destroy the long-range ordering of the ferroelectric and activate a reversible phase transition while promoting polarization rotation when the dipoles are aligned along the applied electric field. Our results not only demonstrate the potential application of BNT-based materials in low-frequency, large-stroke actuators but also provide a general methodology to achieve large strain.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.ade7078</identifier><identifier>PMID: 36735779</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>MATERIALS SCIENCE ; Science & Technology - Other Topics</subject><ispartof>Science advances, 2023-02, Vol.9 (5), p.eade7078</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1748-5fad131eea2aa38b963efe4409fcd94e24387a9372198df9f8e2ddff516330dc3</citedby><cites>FETCH-LOGICAL-c1748-5fad131eea2aa38b963efe4409fcd94e24387a9372198df9f8e2ddff516330dc3</cites><orcidid>0000-0002-2891-7086 ; 0000-0001-9831-6035 ; 0000-0002-7330-8976 ; 0000-0002-4973-9784 ; 0000-0001-5858-5046 ; 0000-0002-8006-3495 ; 0000-0002-3094-3574 ; 0000-0001-7016-4084 ; 0000-0002-3214-9016 ; 0000-0001-6139-6887 ; 0000000161396887 ; 0000000273308976 ; 0000000158585046 ; 0000000228917086 ; 0000000280063495 ; 0000000232149016 ; 0000000170164084 ; 0000000198316035 ; 0000000230943574 ; 0000000249739784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36735779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2470187$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Huajie</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Huang, Houbing</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Tucker, Matthew G</creatorcontrib><creatorcontrib>Sun, Zheng</creatorcontrib><creatorcontrib>Yao, Yonghao</creatorcontrib><creatorcontrib>Gao, Baitao</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Tang, Mingxue</creatorcontrib><creatorcontrib>Qi, He</creatorcontrib><creatorcontrib>Deng, Shiqing</creatorcontrib><creatorcontrib>Zhang, Shujun</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Achieving giant electrostrain of above 1% in (Bi,Na)TiO 3 -based lead-free piezoelectrics via introducing oxygen-defect composition</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Piezoelectric ceramics have been extensively used in actuators, where the magnitude of electrostrain is key indicator for large-stroke actuation applications. Here, we propose an innovative strategy based on defect chemistry to form a defect-engineered morphotropic phase boundary and achieve a giant strain of 1.12% in lead-free Bi
Na
TiO
(BNT)-based ceramics. The incorporation of the hypothetical perovskite BaAlO
with nominal oxygen defect into BNT will form strongly polarized directional defect dipoles, leading to a strong pinning effect after aging. The large asymmetrical strain is mainly attributed to two factors: The defect dipoles along crystallographic [001] direction destroy the long-range ordering of the ferroelectric and activate a reversible phase transition while promoting polarization rotation when the dipoles are aligned along the applied electric field. Our results not only demonstrate the potential application of BNT-based materials in low-frequency, large-stroke actuators but also provide a general methodology to achieve large strain.</description><subject>MATERIALS SCIENCE</subject><subject>Science & Technology - Other Topics</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAYhoMobsxdPUoQBAU7kyZt2uMc_oLhLvNc0uTLFtma0nTFefUfN6MqnvIFnvfl-x6EzimZUBqnd15ZqbuJ1CCIyI7QMGYiieKEZ8f_5gEae_9OCKE8TROan6IBSwVLhMiH6Guq1hY6W63wysqqxbAB1TbOt420FXYGy9J1gOkVDt_re3v7Km-WdoEZjkrpQeMNSB2ZBgDXFj5dn7fK487KkAldeqcO_e5jv4Iq0mACgZXb1s7b1rrqDJ0YufEw_nlH6O3xYTl7juaLp5fZdB4pKngWJUZqyiiAjKVkWZmnLFRxTnKjdM4h5iwTMmcipnmmTW4yiLU2JqEpY0QrNkKXfW-4zhZBXgtqrVxVhX2KmAtCMxGgSQ-pIME3YIq6sVvZ7AtKioP1orde_FgPgYs-UO_KLeg__Ncx-wb27YCr</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>Luo, Huajie</creator><creator>Liu, Hui</creator><creator>Huang, Houbing</creator><creator>Song, Yu</creator><creator>Tucker, Matthew G</creator><creator>Sun, Zheng</creator><creator>Yao, Yonghao</creator><creator>Gao, Baitao</creator><creator>Ren, Yang</creator><creator>Tang, Mingxue</creator><creator>Qi, He</creator><creator>Deng, Shiqing</creator><creator>Zhang, Shujun</creator><creator>Chen, Jun</creator><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2891-7086</orcidid><orcidid>https://orcid.org/0000-0001-9831-6035</orcidid><orcidid>https://orcid.org/0000-0002-7330-8976</orcidid><orcidid>https://orcid.org/0000-0002-4973-9784</orcidid><orcidid>https://orcid.org/0000-0001-5858-5046</orcidid><orcidid>https://orcid.org/0000-0002-8006-3495</orcidid><orcidid>https://orcid.org/0000-0002-3094-3574</orcidid><orcidid>https://orcid.org/0000-0001-7016-4084</orcidid><orcidid>https://orcid.org/0000-0002-3214-9016</orcidid><orcidid>https://orcid.org/0000-0001-6139-6887</orcidid><orcidid>https://orcid.org/0000000161396887</orcidid><orcidid>https://orcid.org/0000000273308976</orcidid><orcidid>https://orcid.org/0000000158585046</orcidid><orcidid>https://orcid.org/0000000228917086</orcidid><orcidid>https://orcid.org/0000000280063495</orcidid><orcidid>https://orcid.org/0000000232149016</orcidid><orcidid>https://orcid.org/0000000170164084</orcidid><orcidid>https://orcid.org/0000000198316035</orcidid><orcidid>https://orcid.org/0000000230943574</orcidid><orcidid>https://orcid.org/0000000249739784</orcidid></search><sort><creationdate>20230203</creationdate><title>Achieving giant electrostrain of above 1% in (Bi,Na)TiO 3 -based lead-free piezoelectrics via introducing oxygen-defect composition</title><author>Luo, Huajie ; Liu, Hui ; Huang, Houbing ; Song, Yu ; Tucker, Matthew G ; Sun, Zheng ; Yao, Yonghao ; Gao, Baitao ; Ren, Yang ; Tang, Mingxue ; Qi, He ; Deng, Shiqing ; Zhang, Shujun ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1748-5fad131eea2aa38b963efe4409fcd94e24387a9372198df9f8e2ddff516330dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>MATERIALS SCIENCE</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Huajie</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Huang, Houbing</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Tucker, Matthew G</creatorcontrib><creatorcontrib>Sun, Zheng</creatorcontrib><creatorcontrib>Yao, Yonghao</creatorcontrib><creatorcontrib>Gao, Baitao</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Tang, Mingxue</creatorcontrib><creatorcontrib>Qi, He</creatorcontrib><creatorcontrib>Deng, Shiqing</creatorcontrib><creatorcontrib>Zhang, Shujun</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Huajie</au><au>Liu, Hui</au><au>Huang, Houbing</au><au>Song, Yu</au><au>Tucker, Matthew G</au><au>Sun, Zheng</au><au>Yao, Yonghao</au><au>Gao, Baitao</au><au>Ren, Yang</au><au>Tang, Mingxue</au><au>Qi, He</au><au>Deng, Shiqing</au><au>Zhang, Shujun</au><au>Chen, Jun</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving giant electrostrain of above 1% in (Bi,Na)TiO 3 -based lead-free piezoelectrics via introducing oxygen-defect composition</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-02-03</date><risdate>2023</risdate><volume>9</volume><issue>5</issue><spage>eade7078</spage><pages>eade7078-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Piezoelectric ceramics have been extensively used in actuators, where the magnitude of electrostrain is key indicator for large-stroke actuation applications. Here, we propose an innovative strategy based on defect chemistry to form a defect-engineered morphotropic phase boundary and achieve a giant strain of 1.12% in lead-free Bi
Na
TiO
(BNT)-based ceramics. The incorporation of the hypothetical perovskite BaAlO
with nominal oxygen defect into BNT will form strongly polarized directional defect dipoles, leading to a strong pinning effect after aging. The large asymmetrical strain is mainly attributed to two factors: The defect dipoles along crystallographic [001] direction destroy the long-range ordering of the ferroelectric and activate a reversible phase transition while promoting polarization rotation when the dipoles are aligned along the applied electric field. Our results not only demonstrate the potential application of BNT-based materials in low-frequency, large-stroke actuators but also provide a general methodology to achieve large strain.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>36735779</pmid><doi>10.1126/sciadv.ade7078</doi><orcidid>https://orcid.org/0000-0002-2891-7086</orcidid><orcidid>https://orcid.org/0000-0001-9831-6035</orcidid><orcidid>https://orcid.org/0000-0002-7330-8976</orcidid><orcidid>https://orcid.org/0000-0002-4973-9784</orcidid><orcidid>https://orcid.org/0000-0001-5858-5046</orcidid><orcidid>https://orcid.org/0000-0002-8006-3495</orcidid><orcidid>https://orcid.org/0000-0002-3094-3574</orcidid><orcidid>https://orcid.org/0000-0001-7016-4084</orcidid><orcidid>https://orcid.org/0000-0002-3214-9016</orcidid><orcidid>https://orcid.org/0000-0001-6139-6887</orcidid><orcidid>https://orcid.org/0000000161396887</orcidid><orcidid>https://orcid.org/0000000273308976</orcidid><orcidid>https://orcid.org/0000000158585046</orcidid><orcidid>https://orcid.org/0000000228917086</orcidid><orcidid>https://orcid.org/0000000280063495</orcidid><orcidid>https://orcid.org/0000000232149016</orcidid><orcidid>https://orcid.org/0000000170164084</orcidid><orcidid>https://orcid.org/0000000198316035</orcidid><orcidid>https://orcid.org/0000000230943574</orcidid><orcidid>https://orcid.org/0000000249739784</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2023-02, Vol.9 (5), p.eade7078 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_osti_scitechconnect_2470187 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | MATERIALS SCIENCE Science & Technology - Other Topics |
title | Achieving giant electrostrain of above 1% in (Bi,Na)TiO 3 -based lead-free piezoelectrics via introducing oxygen-defect composition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20giant%20electrostrain%20of%20above%201%25%20in%20(Bi,Na)TiO%203%20-based%20lead-free%20piezoelectrics%20via%20introducing%20oxygen-defect%20composition&rft.jtitle=Science%20advances&rft.au=Luo,%20Huajie&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2023-02-03&rft.volume=9&rft.issue=5&rft.spage=eade7078&rft.pages=eade7078-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.ade7078&rft_dat=%3Cpubmed_osti_%3E36735779%3C/pubmed_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36735779&rfr_iscdi=true |