Finite Element Analysis and Machine Learning Guided Design of Carbon Fiber Organosheet-Based Battery Enclosures for Crashworthiness

Carbon fiber composite can be a potential candidate for replacing metal-based battery enclosures of current electric vehicles (E.V.s) owing to its better strength-to-weight ratio and corrosion resistance. However, the strength of carbon fiber-based structures depends on several parameters that shoul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied composite materials 2024-10, Vol.31 (5), p.1475-1493
Hauptverfasser: Shaikh, Shadab Anwar, Taufique, M. F. N., Balusu, Kranthi, Kulkarni, Shank S., Hale, Forrest, Oleson, Jonathan, Devanathan, Ram, Soulami, Ayoub
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1493
container_issue 5
container_start_page 1475
container_title Applied composite materials
container_volume 31
creator Shaikh, Shadab Anwar
Taufique, M. F. N.
Balusu, Kranthi
Kulkarni, Shank S.
Hale, Forrest
Oleson, Jonathan
Devanathan, Ram
Soulami, Ayoub
description Carbon fiber composite can be a potential candidate for replacing metal-based battery enclosures of current electric vehicles (E.V.s) owing to its better strength-to-weight ratio and corrosion resistance. However, the strength of carbon fiber-based structures depends on several parameters that should be carefully chosen. In this work, we implemented high throughput finite element analysis (FEA) based thermoforming simulation to virtually manufacture the battery enclosure using different design and processing parameters. Subsequently, we performed virtual crash simulations to mimic a side pole crash to evaluate the crashworthiness of the battery enclosures. This high throughput crash simulation dataset was utilized to build predictive models to understand the crashworthiness of an unknown set. Our machine learning (ML) models showed excellent performance (R 2  > 0.97) in predicting the crashworthiness metrics, i.e., crush load efficiency, absorbed energy, intrusion, and maximum deceleration during a crash. We believe that this FEA-ML work framework will be helpful in down select process parameters for carbon fiber-based component design and can be transferrable to other manufacturing technologies.
doi_str_mv 10.1007/s10443-024-10218-z
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2468646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107314162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-d249988f814972121558256e301a638c7fe6c6db39b1b1dc7ebc6b656d9d9fd43</originalsourceid><addsrcrecordid>eNp9kU1vEzEURS0EEqHwB1hZsB6wPR5_LNuQFKSgbkBiZ3nsN4mr1C5-jqp0yx9nyiCxY_U2517pvkPIW84-cMb0R-RMyr5jQnacCW66x2dkxQfdd9JY_ZysmBW248b-eEleId4yxoxWekV-bVNODejmCHeQG73M_njGhNTnSL_6cEgZ6A58zSnv6fUpRYj0E2DaZ1omuvZ1LJlu0wiV3tS9zwUPAK278jiDV741qGe6yeFY8FQB6VQqXVePh4dS21M74mvyYvJHhDd_7wX5vt18W3_udjfXX9aXuy4Iq1sXhbTWmMlwabXggg-DEYOCnnGvehP0BCqoOPZ25COPQcMY1KgGFW20U5T9BXm39BZsyWGYd4dDKDlDaE5IZZRUM_R-ge5r-XkCbO62nOr8FXQ9Z7rnkisxU2KhQi2IFSZ3X9Odr2fHmXsy4hYjbjbi_hhxj3OoX0I4w3kP9V_1f1K_Ac_bj7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107314162</pqid></control><display><type>article</type><title>Finite Element Analysis and Machine Learning Guided Design of Carbon Fiber Organosheet-Based Battery Enclosures for Crashworthiness</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shaikh, Shadab Anwar ; Taufique, M. F. N. ; Balusu, Kranthi ; Kulkarni, Shank S. ; Hale, Forrest ; Oleson, Jonathan ; Devanathan, Ram ; Soulami, Ayoub</creator><creatorcontrib>Shaikh, Shadab Anwar ; Taufique, M. F. N. ; Balusu, Kranthi ; Kulkarni, Shank S. ; Hale, Forrest ; Oleson, Jonathan ; Devanathan, Ram ; Soulami, Ayoub ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Carbon fiber composite can be a potential candidate for replacing metal-based battery enclosures of current electric vehicles (E.V.s) owing to its better strength-to-weight ratio and corrosion resistance. However, the strength of carbon fiber-based structures depends on several parameters that should be carefully chosen. In this work, we implemented high throughput finite element analysis (FEA) based thermoforming simulation to virtually manufacture the battery enclosure using different design and processing parameters. Subsequently, we performed virtual crash simulations to mimic a side pole crash to evaluate the crashworthiness of the battery enclosures. This high throughput crash simulation dataset was utilized to build predictive models to understand the crashworthiness of an unknown set. Our machine learning (ML) models showed excellent performance (R 2  &gt; 0.97) in predicting the crashworthiness metrics, i.e., crush load efficiency, absorbed energy, intrusion, and maximum deceleration during a crash. We believe that this FEA-ML work framework will be helpful in down select process parameters for carbon fiber-based component design and can be transferrable to other manufacturing technologies.</description><identifier>ISSN: 0929-189X</identifier><identifier>EISSN: 1573-4897</identifier><identifier>DOI: 10.1007/s10443-024-10218-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>battery-enclosure ; Carbon fibers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; composite material ; Corrosion resistance ; Crashworthiness ; Crush tests ; Design analysis ; Electric vehicles ; Enclosures ; Fiber composites ; Finite element analysis ; Finite element method ; Impact strength ; Industrial Chemistry/Chemical Engineering ; Machine learning ; Materials Science ; Performance prediction ; Polymer Sciences ; Prediction models ; Process parameters ; Strength to weight ratio ; symbolic regression ; Thermoforming</subject><ispartof>Applied composite materials, 2024-10, Vol.31 (5), p.1475-1493</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c297t-d249988f814972121558256e301a638c7fe6c6db39b1b1dc7ebc6b656d9d9fd43</cites><orcidid>0000000212978300 ; 0000000181254237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10443-024-10218-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10443-024-10218-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2468646$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaikh, Shadab Anwar</creatorcontrib><creatorcontrib>Taufique, M. F. N.</creatorcontrib><creatorcontrib>Balusu, Kranthi</creatorcontrib><creatorcontrib>Kulkarni, Shank S.</creatorcontrib><creatorcontrib>Hale, Forrest</creatorcontrib><creatorcontrib>Oleson, Jonathan</creatorcontrib><creatorcontrib>Devanathan, Ram</creatorcontrib><creatorcontrib>Soulami, Ayoub</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Finite Element Analysis and Machine Learning Guided Design of Carbon Fiber Organosheet-Based Battery Enclosures for Crashworthiness</title><title>Applied composite materials</title><addtitle>Appl Compos Mater</addtitle><description>Carbon fiber composite can be a potential candidate for replacing metal-based battery enclosures of current electric vehicles (E.V.s) owing to its better strength-to-weight ratio and corrosion resistance. However, the strength of carbon fiber-based structures depends on several parameters that should be carefully chosen. In this work, we implemented high throughput finite element analysis (FEA) based thermoforming simulation to virtually manufacture the battery enclosure using different design and processing parameters. Subsequently, we performed virtual crash simulations to mimic a side pole crash to evaluate the crashworthiness of the battery enclosures. This high throughput crash simulation dataset was utilized to build predictive models to understand the crashworthiness of an unknown set. Our machine learning (ML) models showed excellent performance (R 2  &gt; 0.97) in predicting the crashworthiness metrics, i.e., crush load efficiency, absorbed energy, intrusion, and maximum deceleration during a crash. We believe that this FEA-ML work framework will be helpful in down select process parameters for carbon fiber-based component design and can be transferrable to other manufacturing technologies.</description><subject>battery-enclosure</subject><subject>Carbon fibers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>composite material</subject><subject>Corrosion resistance</subject><subject>Crashworthiness</subject><subject>Crush tests</subject><subject>Design analysis</subject><subject>Electric vehicles</subject><subject>Enclosures</subject><subject>Fiber composites</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Impact strength</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Performance prediction</subject><subject>Polymer Sciences</subject><subject>Prediction models</subject><subject>Process parameters</subject><subject>Strength to weight ratio</subject><subject>symbolic regression</subject><subject>Thermoforming</subject><issn>0929-189X</issn><issn>1573-4897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vEzEURS0EEqHwB1hZsB6wPR5_LNuQFKSgbkBiZ3nsN4mr1C5-jqp0yx9nyiCxY_U2517pvkPIW84-cMb0R-RMyr5jQnacCW66x2dkxQfdd9JY_ZysmBW248b-eEleId4yxoxWekV-bVNODejmCHeQG73M_njGhNTnSL_6cEgZ6A58zSnv6fUpRYj0E2DaZ1omuvZ1LJlu0wiV3tS9zwUPAK278jiDV741qGe6yeFY8FQB6VQqXVePh4dS21M74mvyYvJHhDd_7wX5vt18W3_udjfXX9aXuy4Iq1sXhbTWmMlwabXggg-DEYOCnnGvehP0BCqoOPZ25COPQcMY1KgGFW20U5T9BXm39BZsyWGYd4dDKDlDaE5IZZRUM_R-ge5r-XkCbO62nOr8FXQ9Z7rnkisxU2KhQi2IFSZ3X9Odr2fHmXsy4hYjbjbi_hhxj3OoX0I4w3kP9V_1f1K_Ac_bj7w</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Shaikh, Shadab Anwar</creator><creator>Taufique, M. F. N.</creator><creator>Balusu, Kranthi</creator><creator>Kulkarni, Shank S.</creator><creator>Hale, Forrest</creator><creator>Oleson, Jonathan</creator><creator>Devanathan, Ram</creator><creator>Soulami, Ayoub</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000212978300</orcidid><orcidid>https://orcid.org/0000000181254237</orcidid></search><sort><creationdate>20241001</creationdate><title>Finite Element Analysis and Machine Learning Guided Design of Carbon Fiber Organosheet-Based Battery Enclosures for Crashworthiness</title><author>Shaikh, Shadab Anwar ; Taufique, M. F. N. ; Balusu, Kranthi ; Kulkarni, Shank S. ; Hale, Forrest ; Oleson, Jonathan ; Devanathan, Ram ; Soulami, Ayoub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-d249988f814972121558256e301a638c7fe6c6db39b1b1dc7ebc6b656d9d9fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>battery-enclosure</topic><topic>Carbon fibers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>composite material</topic><topic>Corrosion resistance</topic><topic>Crashworthiness</topic><topic>Crush tests</topic><topic>Design analysis</topic><topic>Electric vehicles</topic><topic>Enclosures</topic><topic>Fiber composites</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Impact strength</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Performance prediction</topic><topic>Polymer Sciences</topic><topic>Prediction models</topic><topic>Process parameters</topic><topic>Strength to weight ratio</topic><topic>symbolic regression</topic><topic>Thermoforming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaikh, Shadab Anwar</creatorcontrib><creatorcontrib>Taufique, M. F. N.</creatorcontrib><creatorcontrib>Balusu, Kranthi</creatorcontrib><creatorcontrib>Kulkarni, Shank S.</creatorcontrib><creatorcontrib>Hale, Forrest</creatorcontrib><creatorcontrib>Oleson, Jonathan</creatorcontrib><creatorcontrib>Devanathan, Ram</creatorcontrib><creatorcontrib>Soulami, Ayoub</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Applied composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaikh, Shadab Anwar</au><au>Taufique, M. F. N.</au><au>Balusu, Kranthi</au><au>Kulkarni, Shank S.</au><au>Hale, Forrest</au><au>Oleson, Jonathan</au><au>Devanathan, Ram</au><au>Soulami, Ayoub</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Element Analysis and Machine Learning Guided Design of Carbon Fiber Organosheet-Based Battery Enclosures for Crashworthiness</atitle><jtitle>Applied composite materials</jtitle><stitle>Appl Compos Mater</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>31</volume><issue>5</issue><spage>1475</spage><epage>1493</epage><pages>1475-1493</pages><issn>0929-189X</issn><eissn>1573-4897</eissn><abstract>Carbon fiber composite can be a potential candidate for replacing metal-based battery enclosures of current electric vehicles (E.V.s) owing to its better strength-to-weight ratio and corrosion resistance. However, the strength of carbon fiber-based structures depends on several parameters that should be carefully chosen. In this work, we implemented high throughput finite element analysis (FEA) based thermoforming simulation to virtually manufacture the battery enclosure using different design and processing parameters. Subsequently, we performed virtual crash simulations to mimic a side pole crash to evaluate the crashworthiness of the battery enclosures. This high throughput crash simulation dataset was utilized to build predictive models to understand the crashworthiness of an unknown set. Our machine learning (ML) models showed excellent performance (R 2  &gt; 0.97) in predicting the crashworthiness metrics, i.e., crush load efficiency, absorbed energy, intrusion, and maximum deceleration during a crash. We believe that this FEA-ML work framework will be helpful in down select process parameters for carbon fiber-based component design and can be transferrable to other manufacturing technologies.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10443-024-10218-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000000212978300</orcidid><orcidid>https://orcid.org/0000000181254237</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-189X
ispartof Applied composite materials, 2024-10, Vol.31 (5), p.1475-1493
issn 0929-189X
1573-4897
language eng
recordid cdi_osti_scitechconnect_2468646
source SpringerLink Journals - AutoHoldings
subjects battery-enclosure
Carbon fibers
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
composite material
Corrosion resistance
Crashworthiness
Crush tests
Design analysis
Electric vehicles
Enclosures
Fiber composites
Finite element analysis
Finite element method
Impact strength
Industrial Chemistry/Chemical Engineering
Machine learning
Materials Science
Performance prediction
Polymer Sciences
Prediction models
Process parameters
Strength to weight ratio
symbolic regression
Thermoforming
title Finite Element Analysis and Machine Learning Guided Design of Carbon Fiber Organosheet-Based Battery Enclosures for Crashworthiness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Element%20Analysis%20and%20Machine%20Learning%20Guided%20Design%20of%20Carbon%20Fiber%20Organosheet-Based%20Battery%20Enclosures%20for%20Crashworthiness&rft.jtitle=Applied%20composite%20materials&rft.au=Shaikh,%20Shadab%20Anwar&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-10-01&rft.volume=31&rft.issue=5&rft.spage=1475&rft.epage=1493&rft.pages=1475-1493&rft.issn=0929-189X&rft.eissn=1573-4897&rft_id=info:doi/10.1007/s10443-024-10218-z&rft_dat=%3Cproquest_osti_%3E3107314162%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107314162&rft_id=info:pmid/&rfr_iscdi=true