Dynamic Bubbling Balanced Proactive CO2 Capture and Reduction on a Triple-Phase Interface Nanoporous Electrocatalyst

The formation and preservation of the active phase of the catalysts at the triple-phase interface during CO2 capture and reduction is essential for improving the conversion efficiency of CO2 electroreduction toward value-added chemicals and fuels under operational conditions. Designing such ideal ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-08, Vol.146 (31), p.21335-21347
Hauptverfasser: Zhang, Wei, Yu, Ao, Mao, Haiyan, Feng, Guangxia, Li, Cheng, Wang, Guanzhi, Chang, Jinfa, Halat, David, Li, Zhao, Yu, Weilai, Shi, Yaping, Liu, Shengwen, Fox, David W., Zhuang, Hao, Cai, Angela, Wu, Bing, Joshua, Fnu, Martinez, John R., Zhai, Lei, Gu, M. Danny, Shan, Xiaonan, Reimer, Jeffrey A., Cui, Yi, Yang, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21347
container_issue 31
container_start_page 21335
container_title Journal of the American Chemical Society
container_volume 146
creator Zhang, Wei
Yu, Ao
Mao, Haiyan
Feng, Guangxia
Li, Cheng
Wang, Guanzhi
Chang, Jinfa
Halat, David
Li, Zhao
Yu, Weilai
Shi, Yaping
Liu, Shengwen
Fox, David W.
Zhuang, Hao
Cai, Angela
Wu, Bing
Joshua, Fnu
Martinez, John R.
Zhai, Lei
Gu, M. Danny
Shan, Xiaonan
Reimer, Jeffrey A.
Cui, Yi
Yang, Yang
description The formation and preservation of the active phase of the catalysts at the triple-phase interface during CO2 capture and reduction is essential for improving the conversion efficiency of CO2 electroreduction toward value-added chemicals and fuels under operational conditions. Designing such ideal catalysts that can mitigate parasitic hydrogen generation and prevent active phase degradation during the CO2 reduction reaction (CO2RR), however, remains a significant challenge. Herein, we developed an interfacial engineering strategy to build a new SnO x catalyst by invoking multiscale approaches. This catalyst features a hierarchically nanoporous structure coated with an organic F-monolayer that modifies the triple-phase interface in aqueous electrolytes, substantially reducing competing hydrogen generation (less than 5%) and enhancing CO2RR selectivity (∼90%). This rationally designed triple-phase interface overcomes the issue of limited CO2 solubility in aqueous electrolytes via proactive CO2 capture and reduction. Concurrently, we utilized pulsed square-wave potentials to dynamically recover the active phase for the CO2RR to regulate the production of C1 products such as formate and carbon monoxide (CO). This protocol ensures profoundly enhanced CO2RR selectivity (∼90%) compared with constant potential (∼70%) applied at −0.8 V (V vs RHE). We further achieved a mechanistic understanding of the CO2 capture and reduction processes under pulsed square-wave potentials via in situ Raman spectroscopy, thereby observing the potential-dependent intensity of Raman vibrational modes of the active phase and CO2RR intermediates. This work will inspire material design strategies by leveraging triple-phase interface engineering for emerging electrochemical processes, as technology moves toward electrification and decarbonization.
doi_str_mv 10.1021/jacs.4c02786
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2462730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084768953</sourcerecordid><originalsourceid>FETCH-LOGICAL-a216t-d2d57e1c4e662004435d3368bb02d96fa2487e4bc5c2206bd8cbea78dabe7b8c3</originalsourceid><addsrcrecordid>eNpFkE1rGzEQhkVoIW7aW3-A6KmXTfWxq5WPtfPRQGhMcc9iNBrXa9aSs9IG8u-jkEBhYJiZl-HhYeyrFJdSKPnjAJgvWxSqt-aMLWSnRNNJZT6whRBCNXWtz9mnnA91bJWVC1auniMcB-Sr2ftxiP_4CkaISIFvpgRYhifi6wfF13Aq80QcYuB_KMz1kiKvBXw7DaeRms0eMvG7WGjaARL_DTGd0pTmzK9HwjIlhALjcy6f2ccdjJm-vPcL9vfmerv-1dw_3N6tf943oKQpTVCh60liS8aoCtzqLmhtrPdChaXZgWptT63HDpUSxgeLnqC3ATz13qK-YN_e_qZcBpdxKIR7TDFWGqdao3otauj7W-g0pceZcnHHISON1QJVdqeFbXtjl53-H62e3SHNU6z0Tgr3at-92nfv9vULDq144w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084768953</pqid></control><display><type>article</type><title>Dynamic Bubbling Balanced Proactive CO2 Capture and Reduction on a Triple-Phase Interface Nanoporous Electrocatalyst</title><source>ACS Publications</source><creator>Zhang, Wei ; Yu, Ao ; Mao, Haiyan ; Feng, Guangxia ; Li, Cheng ; Wang, Guanzhi ; Chang, Jinfa ; Halat, David ; Li, Zhao ; Yu, Weilai ; Shi, Yaping ; Liu, Shengwen ; Fox, David W. ; Zhuang, Hao ; Cai, Angela ; Wu, Bing ; Joshua, Fnu ; Martinez, John R. ; Zhai, Lei ; Gu, M. Danny ; Shan, Xiaonan ; Reimer, Jeffrey A. ; Cui, Yi ; Yang, Yang</creator><creatorcontrib>Zhang, Wei ; Yu, Ao ; Mao, Haiyan ; Feng, Guangxia ; Li, Cheng ; Wang, Guanzhi ; Chang, Jinfa ; Halat, David ; Li, Zhao ; Yu, Weilai ; Shi, Yaping ; Liu, Shengwen ; Fox, David W. ; Zhuang, Hao ; Cai, Angela ; Wu, Bing ; Joshua, Fnu ; Martinez, John R. ; Zhai, Lei ; Gu, M. Danny ; Shan, Xiaonan ; Reimer, Jeffrey A. ; Cui, Yi ; Yang, Yang ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The formation and preservation of the active phase of the catalysts at the triple-phase interface during CO2 capture and reduction is essential for improving the conversion efficiency of CO2 electroreduction toward value-added chemicals and fuels under operational conditions. Designing such ideal catalysts that can mitigate parasitic hydrogen generation and prevent active phase degradation during the CO2 reduction reaction (CO2RR), however, remains a significant challenge. Herein, we developed an interfacial engineering strategy to build a new SnO x catalyst by invoking multiscale approaches. This catalyst features a hierarchically nanoporous structure coated with an organic F-monolayer that modifies the triple-phase interface in aqueous electrolytes, substantially reducing competing hydrogen generation (less than 5%) and enhancing CO2RR selectivity (∼90%). This rationally designed triple-phase interface overcomes the issue of limited CO2 solubility in aqueous electrolytes via proactive CO2 capture and reduction. Concurrently, we utilized pulsed square-wave potentials to dynamically recover the active phase for the CO2RR to regulate the production of C1 products such as formate and carbon monoxide (CO). This protocol ensures profoundly enhanced CO2RR selectivity (∼90%) compared with constant potential (∼70%) applied at −0.8 V (V vs RHE). We further achieved a mechanistic understanding of the CO2 capture and reduction processes under pulsed square-wave potentials via in situ Raman spectroscopy, thereby observing the potential-dependent intensity of Raman vibrational modes of the active phase and CO2RR intermediates. This work will inspire material design strategies by leveraging triple-phase interface engineering for emerging electrochemical processes, as technology moves toward electrification and decarbonization.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c02786</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>electrodes ; interfaces ; oxides ; phase transitions ; porosity</subject><ispartof>Journal of the American Chemical Society, 2024-08, Vol.146 (31), p.21335-21347</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3886-2154 ; 0000-0002-9420-0702 ; 0000-0002-5126-9611 ; 0000-0002-5094-5630 ; 0000-0002-5066-3625 ; 0000-0002-7846-8063 ; 0000-0001-7521-5573 ; 0000-0002-0919-1689 ; 0000-0002-4410-6021 ; 0000-0002-2739-5124 ; 0000-0003-1449-6329 ; 0000-0002-6103-6352 ; 0000000175215573 ; 0000000244106021 ; 0000000261036352 ; 0000000250663625 ; 0000000314496329 ; 0000000250945630 ; 0000000209191689 ; 0000000294200702 ; 0000000278468063 ; 0000000227395124 ; 0000000251269611 ; 0000000238862154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c02786$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c02786$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2462730$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yu, Ao</creatorcontrib><creatorcontrib>Mao, Haiyan</creatorcontrib><creatorcontrib>Feng, Guangxia</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Wang, Guanzhi</creatorcontrib><creatorcontrib>Chang, Jinfa</creatorcontrib><creatorcontrib>Halat, David</creatorcontrib><creatorcontrib>Li, Zhao</creatorcontrib><creatorcontrib>Yu, Weilai</creatorcontrib><creatorcontrib>Shi, Yaping</creatorcontrib><creatorcontrib>Liu, Shengwen</creatorcontrib><creatorcontrib>Fox, David W.</creatorcontrib><creatorcontrib>Zhuang, Hao</creatorcontrib><creatorcontrib>Cai, Angela</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Joshua, Fnu</creatorcontrib><creatorcontrib>Martinez, John R.</creatorcontrib><creatorcontrib>Zhai, Lei</creatorcontrib><creatorcontrib>Gu, M. Danny</creatorcontrib><creatorcontrib>Shan, Xiaonan</creatorcontrib><creatorcontrib>Reimer, Jeffrey A.</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Dynamic Bubbling Balanced Proactive CO2 Capture and Reduction on a Triple-Phase Interface Nanoporous Electrocatalyst</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The formation and preservation of the active phase of the catalysts at the triple-phase interface during CO2 capture and reduction is essential for improving the conversion efficiency of CO2 electroreduction toward value-added chemicals and fuels under operational conditions. Designing such ideal catalysts that can mitigate parasitic hydrogen generation and prevent active phase degradation during the CO2 reduction reaction (CO2RR), however, remains a significant challenge. Herein, we developed an interfacial engineering strategy to build a new SnO x catalyst by invoking multiscale approaches. This catalyst features a hierarchically nanoporous structure coated with an organic F-monolayer that modifies the triple-phase interface in aqueous electrolytes, substantially reducing competing hydrogen generation (less than 5%) and enhancing CO2RR selectivity (∼90%). This rationally designed triple-phase interface overcomes the issue of limited CO2 solubility in aqueous electrolytes via proactive CO2 capture and reduction. Concurrently, we utilized pulsed square-wave potentials to dynamically recover the active phase for the CO2RR to regulate the production of C1 products such as formate and carbon monoxide (CO). This protocol ensures profoundly enhanced CO2RR selectivity (∼90%) compared with constant potential (∼70%) applied at −0.8 V (V vs RHE). We further achieved a mechanistic understanding of the CO2 capture and reduction processes under pulsed square-wave potentials via in situ Raman spectroscopy, thereby observing the potential-dependent intensity of Raman vibrational modes of the active phase and CO2RR intermediates. This work will inspire material design strategies by leveraging triple-phase interface engineering for emerging electrochemical processes, as technology moves toward electrification and decarbonization.</description><subject>electrodes</subject><subject>interfaces</subject><subject>oxides</subject><subject>phase transitions</subject><subject>porosity</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1rGzEQhkVoIW7aW3-A6KmXTfWxq5WPtfPRQGhMcc9iNBrXa9aSs9IG8u-jkEBhYJiZl-HhYeyrFJdSKPnjAJgvWxSqt-aMLWSnRNNJZT6whRBCNXWtz9mnnA91bJWVC1auniMcB-Sr2ftxiP_4CkaISIFvpgRYhifi6wfF13Aq80QcYuB_KMz1kiKvBXw7DaeRms0eMvG7WGjaARL_DTGd0pTmzK9HwjIlhALjcy6f2ccdjJm-vPcL9vfmerv-1dw_3N6tf943oKQpTVCh60liS8aoCtzqLmhtrPdChaXZgWptT63HDpUSxgeLnqC3ATz13qK-YN_e_qZcBpdxKIR7TDFWGqdao3otauj7W-g0pceZcnHHISON1QJVdqeFbXtjl53-H62e3SHNU6z0Tgr3at-92nfv9vULDq144w</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Zhang, Wei</creator><creator>Yu, Ao</creator><creator>Mao, Haiyan</creator><creator>Feng, Guangxia</creator><creator>Li, Cheng</creator><creator>Wang, Guanzhi</creator><creator>Chang, Jinfa</creator><creator>Halat, David</creator><creator>Li, Zhao</creator><creator>Yu, Weilai</creator><creator>Shi, Yaping</creator><creator>Liu, Shengwen</creator><creator>Fox, David W.</creator><creator>Zhuang, Hao</creator><creator>Cai, Angela</creator><creator>Wu, Bing</creator><creator>Joshua, Fnu</creator><creator>Martinez, John R.</creator><creator>Zhai, Lei</creator><creator>Gu, M. Danny</creator><creator>Shan, Xiaonan</creator><creator>Reimer, Jeffrey A.</creator><creator>Cui, Yi</creator><creator>Yang, Yang</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3886-2154</orcidid><orcidid>https://orcid.org/0000-0002-9420-0702</orcidid><orcidid>https://orcid.org/0000-0002-5126-9611</orcidid><orcidid>https://orcid.org/0000-0002-5094-5630</orcidid><orcidid>https://orcid.org/0000-0002-5066-3625</orcidid><orcidid>https://orcid.org/0000-0002-7846-8063</orcidid><orcidid>https://orcid.org/0000-0001-7521-5573</orcidid><orcidid>https://orcid.org/0000-0002-0919-1689</orcidid><orcidid>https://orcid.org/0000-0002-4410-6021</orcidid><orcidid>https://orcid.org/0000-0002-2739-5124</orcidid><orcidid>https://orcid.org/0000-0003-1449-6329</orcidid><orcidid>https://orcid.org/0000-0002-6103-6352</orcidid><orcidid>https://orcid.org/0000000175215573</orcidid><orcidid>https://orcid.org/0000000244106021</orcidid><orcidid>https://orcid.org/0000000261036352</orcidid><orcidid>https://orcid.org/0000000250663625</orcidid><orcidid>https://orcid.org/0000000314496329</orcidid><orcidid>https://orcid.org/0000000250945630</orcidid><orcidid>https://orcid.org/0000000209191689</orcidid><orcidid>https://orcid.org/0000000294200702</orcidid><orcidid>https://orcid.org/0000000278468063</orcidid><orcidid>https://orcid.org/0000000227395124</orcidid><orcidid>https://orcid.org/0000000251269611</orcidid><orcidid>https://orcid.org/0000000238862154</orcidid></search><sort><creationdate>20240807</creationdate><title>Dynamic Bubbling Balanced Proactive CO2 Capture and Reduction on a Triple-Phase Interface Nanoporous Electrocatalyst</title><author>Zhang, Wei ; Yu, Ao ; Mao, Haiyan ; Feng, Guangxia ; Li, Cheng ; Wang, Guanzhi ; Chang, Jinfa ; Halat, David ; Li, Zhao ; Yu, Weilai ; Shi, Yaping ; Liu, Shengwen ; Fox, David W. ; Zhuang, Hao ; Cai, Angela ; Wu, Bing ; Joshua, Fnu ; Martinez, John R. ; Zhai, Lei ; Gu, M. Danny ; Shan, Xiaonan ; Reimer, Jeffrey A. ; Cui, Yi ; Yang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a216t-d2d57e1c4e662004435d3368bb02d96fa2487e4bc5c2206bd8cbea78dabe7b8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>electrodes</topic><topic>interfaces</topic><topic>oxides</topic><topic>phase transitions</topic><topic>porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yu, Ao</creatorcontrib><creatorcontrib>Mao, Haiyan</creatorcontrib><creatorcontrib>Feng, Guangxia</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Wang, Guanzhi</creatorcontrib><creatorcontrib>Chang, Jinfa</creatorcontrib><creatorcontrib>Halat, David</creatorcontrib><creatorcontrib>Li, Zhao</creatorcontrib><creatorcontrib>Yu, Weilai</creatorcontrib><creatorcontrib>Shi, Yaping</creatorcontrib><creatorcontrib>Liu, Shengwen</creatorcontrib><creatorcontrib>Fox, David W.</creatorcontrib><creatorcontrib>Zhuang, Hao</creatorcontrib><creatorcontrib>Cai, Angela</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Joshua, Fnu</creatorcontrib><creatorcontrib>Martinez, John R.</creatorcontrib><creatorcontrib>Zhai, Lei</creatorcontrib><creatorcontrib>Gu, M. Danny</creatorcontrib><creatorcontrib>Shan, Xiaonan</creatorcontrib><creatorcontrib>Reimer, Jeffrey A.</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wei</au><au>Yu, Ao</au><au>Mao, Haiyan</au><au>Feng, Guangxia</au><au>Li, Cheng</au><au>Wang, Guanzhi</au><au>Chang, Jinfa</au><au>Halat, David</au><au>Li, Zhao</au><au>Yu, Weilai</au><au>Shi, Yaping</au><au>Liu, Shengwen</au><au>Fox, David W.</au><au>Zhuang, Hao</au><au>Cai, Angela</au><au>Wu, Bing</au><au>Joshua, Fnu</au><au>Martinez, John R.</au><au>Zhai, Lei</au><au>Gu, M. Danny</au><au>Shan, Xiaonan</au><au>Reimer, Jeffrey A.</au><au>Cui, Yi</au><au>Yang, Yang</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Bubbling Balanced Proactive CO2 Capture and Reduction on a Triple-Phase Interface Nanoporous Electrocatalyst</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-08-07</date><risdate>2024</risdate><volume>146</volume><issue>31</issue><spage>21335</spage><epage>21347</epage><pages>21335-21347</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The formation and preservation of the active phase of the catalysts at the triple-phase interface during CO2 capture and reduction is essential for improving the conversion efficiency of CO2 electroreduction toward value-added chemicals and fuels under operational conditions. Designing such ideal catalysts that can mitigate parasitic hydrogen generation and prevent active phase degradation during the CO2 reduction reaction (CO2RR), however, remains a significant challenge. Herein, we developed an interfacial engineering strategy to build a new SnO x catalyst by invoking multiscale approaches. This catalyst features a hierarchically nanoporous structure coated with an organic F-monolayer that modifies the triple-phase interface in aqueous electrolytes, substantially reducing competing hydrogen generation (less than 5%) and enhancing CO2RR selectivity (∼90%). This rationally designed triple-phase interface overcomes the issue of limited CO2 solubility in aqueous electrolytes via proactive CO2 capture and reduction. Concurrently, we utilized pulsed square-wave potentials to dynamically recover the active phase for the CO2RR to regulate the production of C1 products such as formate and carbon monoxide (CO). This protocol ensures profoundly enhanced CO2RR selectivity (∼90%) compared with constant potential (∼70%) applied at −0.8 V (V vs RHE). We further achieved a mechanistic understanding of the CO2 capture and reduction processes under pulsed square-wave potentials via in situ Raman spectroscopy, thereby observing the potential-dependent intensity of Raman vibrational modes of the active phase and CO2RR intermediates. This work will inspire material design strategies by leveraging triple-phase interface engineering for emerging electrochemical processes, as technology moves toward electrification and decarbonization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jacs.4c02786</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3886-2154</orcidid><orcidid>https://orcid.org/0000-0002-9420-0702</orcidid><orcidid>https://orcid.org/0000-0002-5126-9611</orcidid><orcidid>https://orcid.org/0000-0002-5094-5630</orcidid><orcidid>https://orcid.org/0000-0002-5066-3625</orcidid><orcidid>https://orcid.org/0000-0002-7846-8063</orcidid><orcidid>https://orcid.org/0000-0001-7521-5573</orcidid><orcidid>https://orcid.org/0000-0002-0919-1689</orcidid><orcidid>https://orcid.org/0000-0002-4410-6021</orcidid><orcidid>https://orcid.org/0000-0002-2739-5124</orcidid><orcidid>https://orcid.org/0000-0003-1449-6329</orcidid><orcidid>https://orcid.org/0000-0002-6103-6352</orcidid><orcidid>https://orcid.org/0000000175215573</orcidid><orcidid>https://orcid.org/0000000244106021</orcidid><orcidid>https://orcid.org/0000000261036352</orcidid><orcidid>https://orcid.org/0000000250663625</orcidid><orcidid>https://orcid.org/0000000314496329</orcidid><orcidid>https://orcid.org/0000000250945630</orcidid><orcidid>https://orcid.org/0000000209191689</orcidid><orcidid>https://orcid.org/0000000294200702</orcidid><orcidid>https://orcid.org/0000000278468063</orcidid><orcidid>https://orcid.org/0000000227395124</orcidid><orcidid>https://orcid.org/0000000251269611</orcidid><orcidid>https://orcid.org/0000000238862154</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-08, Vol.146 (31), p.21335-21347
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_osti_scitechconnect_2462730
source ACS Publications
subjects electrodes
interfaces
oxides
phase transitions
porosity
title Dynamic Bubbling Balanced Proactive CO2 Capture and Reduction on a Triple-Phase Interface Nanoporous Electrocatalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Bubbling%20Balanced%20Proactive%20CO2%20Capture%20and%20Reduction%20on%20a%20Triple-Phase%20Interface%20Nanoporous%20Electrocatalyst&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhang,%20Wei&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2024-08-07&rft.volume=146&rft.issue=31&rft.spage=21335&rft.epage=21347&rft.pages=21335-21347&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c02786&rft_dat=%3Cproquest_osti_%3E3084768953%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084768953&rft_id=info:pmid/&rfr_iscdi=true