Recent progress of MnBi2Te4 epitaxial thin films as a platform for realising the quantum anomalous Hall effect

Since the first realisation of the quantum anomalous Hall effect (QAHE) in a dilute magnetic-doped topological insulator thin film in 2013, the quantisation temperature has been limited to less than 1 K due to magnetic disorder in dilute magnetic systems. With magnetic moments ordered into the cryst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2024-08, Vol.16 (30), p.14247-14260
Hauptverfasser: Li, Qile, Sung-Kwan, Mo, Edmonds, Mark T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14260
container_issue 30
container_start_page 14247
container_title Nanoscale
container_volume 16
creator Li, Qile
Sung-Kwan, Mo
Edmonds, Mark T
description Since the first realisation of the quantum anomalous Hall effect (QAHE) in a dilute magnetic-doped topological insulator thin film in 2013, the quantisation temperature has been limited to less than 1 K due to magnetic disorder in dilute magnetic systems. With magnetic moments ordered into the crystal lattice, the intrinsic magnetic topological insulator MnBi2Te4 has the potential to eliminate or significantly reduce magnetic disorder and improve the quantisation temperature. Surprisingly, to date, the QAHE has yet to be observed in molecular beam epitaxy (MBE)-grown MnBi2Te4 thin films at zero magnetic field, and what leads to the difficulty in quantisation is still an active research area. Although bulk MnBi2Te4 and exfoliated flakes have been well studied, revealing both the QAHE and axion insulator phases, experimental progress on MBE thin films has been slower. Understanding how the breakdown of the QAHE occurs in MnBi2Te4 thin films and finding solutions that will enable mass-produced millimetre-size QAHE devices operating at elevated temperatures are required. In this mini-review, we will summarise recent studies on the electronic and magnetic properties of MBE MnBi2Te4 thin films and discuss mechanisms that could explain the failure of the QAHE from the aspects of defects, electronic structure, magnetic order, and consequences of their delicate interplay. Finally, we propose several strategies for realising the QAHE at elevated temperatures in MnBi2Te4 thin films.
doi_str_mv 10.1039/d4nr00194j
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2462727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089836916</sourcerecordid><originalsourceid>FETCH-LOGICAL-o243t-4d8f5288bf2942b387daf0eed953bfb3676b9aedc365ab55eb42cc8133822c963</originalsourceid><addsrcrecordid>eNpdz8FKAzEQBuAgCtbqxScIevFSzSbZbHLUolaoCFLPSzY7aVOySbvJgo_vlooHYZiZw8fwD0LXBbkvCFMPLQ89IYXi2xM0oYSTGWMVPf3bBT9HFyltCRGKCTZB4RMMhIx3fVz3kBKOFr-HJ0dXwDHsXNbfTnucNy5g63yXsB4L77zONvYdHhvuQXuXXFiPDPB-0CEPHdYhdtrHIeGF9h6DtWDyJTqz2ie4-p1T9PXyvJovZsuP17f543IWKWd5xltpSyplY6nitGGyarUlAK0qWWMbJirRKA2tYaLUTVlCw6kxsmBMUmqUYFN0c7wbU3Z1Mi6D2ZgYwpihplzQilYjujui8fn9ACnXnUsGvNcBxtw1I7KoqkrJA739R7dx6MP4wkEpyYQqBPsBKyl1Jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089836916</pqid></control><display><type>article</type><title>Recent progress of MnBi2Te4 epitaxial thin films as a platform for realising the quantum anomalous Hall effect</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Qile ; Sung-Kwan, Mo ; Edmonds, Mark T</creator><creatorcontrib>Li, Qile ; Sung-Kwan, Mo ; Edmonds, Mark T ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Since the first realisation of the quantum anomalous Hall effect (QAHE) in a dilute magnetic-doped topological insulator thin film in 2013, the quantisation temperature has been limited to less than 1 K due to magnetic disorder in dilute magnetic systems. With magnetic moments ordered into the crystal lattice, the intrinsic magnetic topological insulator MnBi2Te4 has the potential to eliminate or significantly reduce magnetic disorder and improve the quantisation temperature. Surprisingly, to date, the QAHE has yet to be observed in molecular beam epitaxy (MBE)-grown MnBi2Te4 thin films at zero magnetic field, and what leads to the difficulty in quantisation is still an active research area. Although bulk MnBi2Te4 and exfoliated flakes have been well studied, revealing both the QAHE and axion insulator phases, experimental progress on MBE thin films has been slower. Understanding how the breakdown of the QAHE occurs in MnBi2Te4 thin films and finding solutions that will enable mass-produced millimetre-size QAHE devices operating at elevated temperatures are required. In this mini-review, we will summarise recent studies on the electronic and magnetic properties of MBE MnBi2Te4 thin films and discuss mechanisms that could explain the failure of the QAHE from the aspects of defects, electronic structure, magnetic order, and consequences of their delicate interplay. Finally, we propose several strategies for realising the QAHE at elevated temperatures in MnBi2Te4 thin films.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr00194j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Crystal defects ; Crystal lattices ; Dilution ; Electromagnetism ; Electronic structure ; Epitaxial growth ; Flakes (defects) ; High temperature ; Hot roughing mills ; Magnetic moments ; Magnetic properties ; Molecular beam epitaxy ; Quantum Hall effect ; Thin films ; Topological insulators</subject><ispartof>Nanoscale, 2024-08, Vol.16 (30), p.14247-14260</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000307118514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2462727$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qile</creatorcontrib><creatorcontrib>Sung-Kwan, Mo</creatorcontrib><creatorcontrib>Edmonds, Mark T</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Recent progress of MnBi2Te4 epitaxial thin films as a platform for realising the quantum anomalous Hall effect</title><title>Nanoscale</title><description>Since the first realisation of the quantum anomalous Hall effect (QAHE) in a dilute magnetic-doped topological insulator thin film in 2013, the quantisation temperature has been limited to less than 1 K due to magnetic disorder in dilute magnetic systems. With magnetic moments ordered into the crystal lattice, the intrinsic magnetic topological insulator MnBi2Te4 has the potential to eliminate or significantly reduce magnetic disorder and improve the quantisation temperature. Surprisingly, to date, the QAHE has yet to be observed in molecular beam epitaxy (MBE)-grown MnBi2Te4 thin films at zero magnetic field, and what leads to the difficulty in quantisation is still an active research area. Although bulk MnBi2Te4 and exfoliated flakes have been well studied, revealing both the QAHE and axion insulator phases, experimental progress on MBE thin films has been slower. Understanding how the breakdown of the QAHE occurs in MnBi2Te4 thin films and finding solutions that will enable mass-produced millimetre-size QAHE devices operating at elevated temperatures are required. In this mini-review, we will summarise recent studies on the electronic and magnetic properties of MBE MnBi2Te4 thin films and discuss mechanisms that could explain the failure of the QAHE from the aspects of defects, electronic structure, magnetic order, and consequences of their delicate interplay. Finally, we propose several strategies for realising the QAHE at elevated temperatures in MnBi2Te4 thin films.</description><subject>Crystal defects</subject><subject>Crystal lattices</subject><subject>Dilution</subject><subject>Electromagnetism</subject><subject>Electronic structure</subject><subject>Epitaxial growth</subject><subject>Flakes (defects)</subject><subject>High temperature</subject><subject>Hot roughing mills</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Molecular beam epitaxy</subject><subject>Quantum Hall effect</subject><subject>Thin films</subject><subject>Topological insulators</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdz8FKAzEQBuAgCtbqxScIevFSzSbZbHLUolaoCFLPSzY7aVOySbvJgo_vlooHYZiZw8fwD0LXBbkvCFMPLQ89IYXi2xM0oYSTGWMVPf3bBT9HFyltCRGKCTZB4RMMhIx3fVz3kBKOFr-HJ0dXwDHsXNbfTnucNy5g63yXsB4L77zONvYdHhvuQXuXXFiPDPB-0CEPHdYhdtrHIeGF9h6DtWDyJTqz2ie4-p1T9PXyvJovZsuP17f543IWKWd5xltpSyplY6nitGGyarUlAK0qWWMbJirRKA2tYaLUTVlCw6kxsmBMUmqUYFN0c7wbU3Z1Mi6D2ZgYwpihplzQilYjujui8fn9ACnXnUsGvNcBxtw1I7KoqkrJA739R7dx6MP4wkEpyYQqBPsBKyl1Jw</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Li, Qile</creator><creator>Sung-Kwan, Mo</creator><creator>Edmonds, Mark T</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000307118514</orcidid></search><sort><creationdate>20240807</creationdate><title>Recent progress of MnBi2Te4 epitaxial thin films as a platform for realising the quantum anomalous Hall effect</title><author>Li, Qile ; Sung-Kwan, Mo ; Edmonds, Mark T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o243t-4d8f5288bf2942b387daf0eed953bfb3676b9aedc365ab55eb42cc8133822c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystal defects</topic><topic>Crystal lattices</topic><topic>Dilution</topic><topic>Electromagnetism</topic><topic>Electronic structure</topic><topic>Epitaxial growth</topic><topic>Flakes (defects)</topic><topic>High temperature</topic><topic>Hot roughing mills</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Molecular beam epitaxy</topic><topic>Quantum Hall effect</topic><topic>Thin films</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qile</creatorcontrib><creatorcontrib>Sung-Kwan, Mo</creatorcontrib><creatorcontrib>Edmonds, Mark T</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qile</au><au>Sung-Kwan, Mo</au><au>Edmonds, Mark T</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent progress of MnBi2Te4 epitaxial thin films as a platform for realising the quantum anomalous Hall effect</atitle><jtitle>Nanoscale</jtitle><date>2024-08-07</date><risdate>2024</risdate><volume>16</volume><issue>30</issue><spage>14247</spage><epage>14260</epage><pages>14247-14260</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>Since the first realisation of the quantum anomalous Hall effect (QAHE) in a dilute magnetic-doped topological insulator thin film in 2013, the quantisation temperature has been limited to less than 1 K due to magnetic disorder in dilute magnetic systems. With magnetic moments ordered into the crystal lattice, the intrinsic magnetic topological insulator MnBi2Te4 has the potential to eliminate or significantly reduce magnetic disorder and improve the quantisation temperature. Surprisingly, to date, the QAHE has yet to be observed in molecular beam epitaxy (MBE)-grown MnBi2Te4 thin films at zero magnetic field, and what leads to the difficulty in quantisation is still an active research area. Although bulk MnBi2Te4 and exfoliated flakes have been well studied, revealing both the QAHE and axion insulator phases, experimental progress on MBE thin films has been slower. Understanding how the breakdown of the QAHE occurs in MnBi2Te4 thin films and finding solutions that will enable mass-produced millimetre-size QAHE devices operating at elevated temperatures are required. In this mini-review, we will summarise recent studies on the electronic and magnetic properties of MBE MnBi2Te4 thin films and discuss mechanisms that could explain the failure of the QAHE from the aspects of defects, electronic structure, magnetic order, and consequences of their delicate interplay. Finally, we propose several strategies for realising the QAHE at elevated temperatures in MnBi2Te4 thin films.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4nr00194j</doi><tpages>14</tpages><orcidid>https://orcid.org/0000000307118514</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2024-08, Vol.16 (30), p.14247-14260
issn 2040-3364
2040-3372
2040-3372
language eng
recordid cdi_osti_scitechconnect_2462727
source Royal Society Of Chemistry Journals 2008-
subjects Crystal defects
Crystal lattices
Dilution
Electromagnetism
Electronic structure
Epitaxial growth
Flakes (defects)
High temperature
Hot roughing mills
Magnetic moments
Magnetic properties
Molecular beam epitaxy
Quantum Hall effect
Thin films
Topological insulators
title Recent progress of MnBi2Te4 epitaxial thin films as a platform for realising the quantum anomalous Hall effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20progress%20of%20MnBi2Te4%20epitaxial%20thin%20films%20as%20a%20platform%20for%20realising%20the%20quantum%20anomalous%20Hall%20effect&rft.jtitle=Nanoscale&rft.au=Li,%20Qile&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2024-08-07&rft.volume=16&rft.issue=30&rft.spage=14247&rft.epage=14260&rft.pages=14247-14260&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr00194j&rft_dat=%3Cproquest_osti_%3E3089836916%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089836916&rft_id=info:pmid/&rfr_iscdi=true