Contribution of the Sub‐Surface to Electrocatalytic Activity in Atomically Precise La0.7Sr0.3MnO3 Heterostructures

Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-12, Vol.17 (49), p.n/a
Hauptverfasser: Lee, Jegon, Adiga, Prajwal, Lee, Sang A, Nam, Seung Hyun, Ju, Hyeon‐Ah, Jung, Min‐Hyoung, Jeong, Hu Young, Kim, Young‐Min, Wong, Cindy, Elzein, Radwan, Addou, Rafik, Stoerzinger, Kelsey A., Choi, Woo Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 49
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Lee, Jegon
Adiga, Prajwal
Lee, Sang A
Nam, Seung Hyun
Ju, Hyeon‐Ah
Jung, Min‐Hyoung
Jeong, Hu Young
Kim, Young‐Min
Wong, Cindy
Elzein, Radwan
Addou, Rafik
Stoerzinger, Kelsey A.
Choi, Woo Seok
description Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub‐surface layers was investigated by employing atomic‐scale thickness control of the La0.7Sr0.3MnO3 (LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non‐monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3 heterostructures. The observation leads to the definition of an “electrochemically‐relevant depth” on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core‐shell architectures. Electrochemically relevant “depth” is characterized by employing epitaxial perovskite oxide heterostructures with atomic‐scale precision thickness control. A layer ≈10 u.c. (≈4 nm) below the surface (electrolyte/electrode interface) is shown to influence the electrocatalytic activity from thickness dependent measurements. The authors′ study redefines the “electrochemical surface” by including the contribution from the sub‐surface layers.
doi_str_mv 10.1002/smll.202103632
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2460505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608004385</sourcerecordid><originalsourceid>FETCH-LOGICAL-o3002-20b82cf768ac98775c99c8ef7b509cbbb455e42accedff4fed1432e0ec8977f33</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRUKtXz0HPrZNkP4-l-AVbFKrnkJ1OMLLdaJJV9uZP8Df6S9xS6Wlm4GFm3idJLjjMOIC4Dpu2nQkQHGQuxUFywnMup3kpqsN9z-E4OQ3hDUBykRYnSVy4Lnrb9NG6jjnD4iuxVd_8fv-sem80EouO3bSE0TvUUbdDtMjmGO2njQOzHZtHt7Go23ZgT57QBmK1hlmx8jCTy-5RsnuK5F2IvsfYewpnyZHRbaDz_zpJXm5vnhf30_rx7mExr6dOjoGmAppSoCnyUmNVFkWGVYUlmaLJoMKmadIso1RoRFobkxpa81QKAsKyKgoj5SS53O0db1sV0EbCV3RdN6ZRIs0hg2yErnbQu3cfPYWo3lzvu_EvJXIoAVJZbqlqR33Zlgb17u1G-0FxUFv3aute7d2r1bKu95P8A-RTfH0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608004385</pqid></control><display><type>article</type><title>Contribution of the Sub‐Surface to Electrocatalytic Activity in Atomically Precise La0.7Sr0.3MnO3 Heterostructures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Jegon ; Adiga, Prajwal ; Lee, Sang A ; Nam, Seung Hyun ; Ju, Hyeon‐Ah ; Jung, Min‐Hyoung ; Jeong, Hu Young ; Kim, Young‐Min ; Wong, Cindy ; Elzein, Radwan ; Addou, Rafik ; Stoerzinger, Kelsey A. ; Choi, Woo Seok</creator><creatorcontrib>Lee, Jegon ; Adiga, Prajwal ; Lee, Sang A ; Nam, Seung Hyun ; Ju, Hyeon‐Ah ; Jung, Min‐Hyoung ; Jeong, Hu Young ; Kim, Young‐Min ; Wong, Cindy ; Elzein, Radwan ; Addou, Rafik ; Stoerzinger, Kelsey A. ; Choi, Woo Seok ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub‐surface layers was investigated by employing atomic‐scale thickness control of the La0.7Sr0.3MnO3 (LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non‐monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3 heterostructures. The observation leads to the definition of an “electrochemically‐relevant depth” on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core‐shell architectures. Electrochemically relevant “depth” is characterized by employing epitaxial perovskite oxide heterostructures with atomic‐scale precision thickness control. A layer ≈10 u.c. (≈4 nm) below the surface (electrolyte/electrode interface) is shown to influence the electrocatalytic activity from thickness dependent measurements. The authors′ study redefines the “electrochemical surface” by including the contribution from the sub‐surface layers.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202103632</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>atomic scale precision ; Catalysts ; Catalytic activity ; electrocatalysis ; Electrolytes ; Electrolytic cells ; epitaxial oxide thin film ; Heterostructures ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Nanomaterials ; Nanoparticles ; Nanotechnology ; oxygen evolution reaction ; Oxygen evolution reactions ; sub-surface layer ; Surface layers ; Thickness ; Thin films</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-12, Vol.17 (49), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2872-6191 ; 0000000228726191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202103632$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202103632$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2460505$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jegon</creatorcontrib><creatorcontrib>Adiga, Prajwal</creatorcontrib><creatorcontrib>Lee, Sang A</creatorcontrib><creatorcontrib>Nam, Seung Hyun</creatorcontrib><creatorcontrib>Ju, Hyeon‐Ah</creatorcontrib><creatorcontrib>Jung, Min‐Hyoung</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Kim, Young‐Min</creatorcontrib><creatorcontrib>Wong, Cindy</creatorcontrib><creatorcontrib>Elzein, Radwan</creatorcontrib><creatorcontrib>Addou, Rafik</creatorcontrib><creatorcontrib>Stoerzinger, Kelsey A.</creatorcontrib><creatorcontrib>Choi, Woo Seok</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Contribution of the Sub‐Surface to Electrocatalytic Activity in Atomically Precise La0.7Sr0.3MnO3 Heterostructures</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub‐surface layers was investigated by employing atomic‐scale thickness control of the La0.7Sr0.3MnO3 (LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non‐monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3 heterostructures. The observation leads to the definition of an “electrochemically‐relevant depth” on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core‐shell architectures. Electrochemically relevant “depth” is characterized by employing epitaxial perovskite oxide heterostructures with atomic‐scale precision thickness control. A layer ≈10 u.c. (≈4 nm) below the surface (electrolyte/electrode interface) is shown to influence the electrocatalytic activity from thickness dependent measurements. The authors′ study redefines the “electrochemical surface” by including the contribution from the sub‐surface layers.</description><subject>atomic scale precision</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>electrocatalysis</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>epitaxial oxide thin film</subject><subject>Heterostructures</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>sub-surface layer</subject><subject>Surface layers</subject><subject>Thickness</subject><subject>Thin films</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhhdRUKtXz0HPrZNkP4-l-AVbFKrnkJ1OMLLdaJJV9uZP8Df6S9xS6Wlm4GFm3idJLjjMOIC4Dpu2nQkQHGQuxUFywnMup3kpqsN9z-E4OQ3hDUBykRYnSVy4Lnrb9NG6jjnD4iuxVd_8fv-sem80EouO3bSE0TvUUbdDtMjmGO2njQOzHZtHt7Go23ZgT57QBmK1hlmx8jCTy-5RsnuK5F2IvsfYewpnyZHRbaDz_zpJXm5vnhf30_rx7mExr6dOjoGmAppSoCnyUmNVFkWGVYUlmaLJoMKmadIso1RoRFobkxpa81QKAsKyKgoj5SS53O0db1sV0EbCV3RdN6ZRIs0hg2yErnbQu3cfPYWo3lzvu_EvJXIoAVJZbqlqR33Zlgb17u1G-0FxUFv3aute7d2r1bKu95P8A-RTfH0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Lee, Jegon</creator><creator>Adiga, Prajwal</creator><creator>Lee, Sang A</creator><creator>Nam, Seung Hyun</creator><creator>Ju, Hyeon‐Ah</creator><creator>Jung, Min‐Hyoung</creator><creator>Jeong, Hu Young</creator><creator>Kim, Young‐Min</creator><creator>Wong, Cindy</creator><creator>Elzein, Radwan</creator><creator>Addou, Rafik</creator><creator>Stoerzinger, Kelsey A.</creator><creator>Choi, Woo Seok</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2872-6191</orcidid><orcidid>https://orcid.org/0000000228726191</orcidid></search><sort><creationdate>20211201</creationdate><title>Contribution of the Sub‐Surface to Electrocatalytic Activity in Atomically Precise La0.7Sr0.3MnO3 Heterostructures</title><author>Lee, Jegon ; Adiga, Prajwal ; Lee, Sang A ; Nam, Seung Hyun ; Ju, Hyeon‐Ah ; Jung, Min‐Hyoung ; Jeong, Hu Young ; Kim, Young‐Min ; Wong, Cindy ; Elzein, Radwan ; Addou, Rafik ; Stoerzinger, Kelsey A. ; Choi, Woo Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o3002-20b82cf768ac98775c99c8ef7b509cbbb455e42accedff4fed1432e0ec8977f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>atomic scale precision</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>electrocatalysis</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>epitaxial oxide thin film</topic><topic>Heterostructures</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>sub-surface layer</topic><topic>Surface layers</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jegon</creatorcontrib><creatorcontrib>Adiga, Prajwal</creatorcontrib><creatorcontrib>Lee, Sang A</creatorcontrib><creatorcontrib>Nam, Seung Hyun</creatorcontrib><creatorcontrib>Ju, Hyeon‐Ah</creatorcontrib><creatorcontrib>Jung, Min‐Hyoung</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Kim, Young‐Min</creatorcontrib><creatorcontrib>Wong, Cindy</creatorcontrib><creatorcontrib>Elzein, Radwan</creatorcontrib><creatorcontrib>Addou, Rafik</creatorcontrib><creatorcontrib>Stoerzinger, Kelsey A.</creatorcontrib><creatorcontrib>Choi, Woo Seok</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jegon</au><au>Adiga, Prajwal</au><au>Lee, Sang A</au><au>Nam, Seung Hyun</au><au>Ju, Hyeon‐Ah</au><au>Jung, Min‐Hyoung</au><au>Jeong, Hu Young</au><au>Kim, Young‐Min</au><au>Wong, Cindy</au><au>Elzein, Radwan</au><au>Addou, Rafik</au><au>Stoerzinger, Kelsey A.</au><au>Choi, Woo Seok</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of the Sub‐Surface to Electrocatalytic Activity in Atomically Precise La0.7Sr0.3MnO3 Heterostructures</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>17</volume><issue>49</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub‐surface layers was investigated by employing atomic‐scale thickness control of the La0.7Sr0.3MnO3 (LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non‐monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3 heterostructures. The observation leads to the definition of an “electrochemically‐relevant depth” on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core‐shell architectures. Electrochemically relevant “depth” is characterized by employing epitaxial perovskite oxide heterostructures with atomic‐scale precision thickness control. A layer ≈10 u.c. (≈4 nm) below the surface (electrolyte/electrode interface) is shown to influence the electrocatalytic activity from thickness dependent measurements. The authors′ study redefines the “electrochemical surface” by including the contribution from the sub‐surface layers.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202103632</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2872-6191</orcidid><orcidid>https://orcid.org/0000000228726191</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-12, Vol.17 (49), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_osti_scitechconnect_2460505
source Wiley Online Library Journals Frontfile Complete
subjects atomic scale precision
Catalysts
Catalytic activity
electrocatalysis
Electrolytes
Electrolytic cells
epitaxial oxide thin film
Heterostructures
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Nanomaterials
Nanoparticles
Nanotechnology
oxygen evolution reaction
Oxygen evolution reactions
sub-surface layer
Surface layers
Thickness
Thin films
title Contribution of the Sub‐Surface to Electrocatalytic Activity in Atomically Precise La0.7Sr0.3MnO3 Heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20the%20Sub%E2%80%90Surface%20to%20Electrocatalytic%20Activity%20in%20Atomically%20Precise%20La0.7Sr0.3MnO3%20Heterostructures&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lee,%20Jegon&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2021-12-01&rft.volume=17&rft.issue=49&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202103632&rft_dat=%3Cproquest_osti_%3E2608004385%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608004385&rft_id=info:pmid/&rfr_iscdi=true