Contribution of the Sub‐Surface to Electrocatalytic Activity in Atomically Precise La0.7Sr0.3MnO3 Heterostructures
Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-12, Vol.17 (49), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 49 |
container_start_page | |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 17 |
creator | Lee, Jegon Adiga, Prajwal Lee, Sang A Nam, Seung Hyun Ju, Hyeon‐Ah Jung, Min‐Hyoung Jeong, Hu Young Kim, Young‐Min Wong, Cindy Elzein, Radwan Addou, Rafik Stoerzinger, Kelsey A. Choi, Woo Seok |
description | Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub‐surface layers was investigated by employing atomic‐scale thickness control of the La0.7Sr0.3MnO3 (LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non‐monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3 heterostructures. The observation leads to the definition of an “electrochemically‐relevant depth” on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core‐shell architectures.
Electrochemically relevant “depth” is characterized by employing epitaxial perovskite oxide heterostructures with atomic‐scale precision thickness control. A layer ≈10 u.c. (≈4 nm) below the surface (electrolyte/electrode interface) is shown to influence the electrocatalytic activity from thickness dependent measurements. The authors′ study redefines the “electrochemical surface” by including the contribution from the sub‐surface layers. |
doi_str_mv | 10.1002/smll.202103632 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2460505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608004385</sourcerecordid><originalsourceid>FETCH-LOGICAL-o3002-20b82cf768ac98775c99c8ef7b509cbbb455e42accedff4fed1432e0ec8977f33</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRUKtXz0HPrZNkP4-l-AVbFKrnkJ1OMLLdaJJV9uZP8Df6S9xS6Wlm4GFm3idJLjjMOIC4Dpu2nQkQHGQuxUFywnMup3kpqsN9z-E4OQ3hDUBykRYnSVy4Lnrb9NG6jjnD4iuxVd_8fv-sem80EouO3bSE0TvUUbdDtMjmGO2njQOzHZtHt7Go23ZgT57QBmK1hlmx8jCTy-5RsnuK5F2IvsfYewpnyZHRbaDz_zpJXm5vnhf30_rx7mExr6dOjoGmAppSoCnyUmNVFkWGVYUlmaLJoMKmadIso1RoRFobkxpa81QKAsKyKgoj5SS53O0db1sV0EbCV3RdN6ZRIs0hg2yErnbQu3cfPYWo3lzvu_EvJXIoAVJZbqlqR33Zlgb17u1G-0FxUFv3aute7d2r1bKu95P8A-RTfH0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608004385</pqid></control><display><type>article</type><title>Contribution of the Sub‐Surface to Electrocatalytic Activity in Atomically Precise La0.7Sr0.3MnO3 Heterostructures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Jegon ; Adiga, Prajwal ; Lee, Sang A ; Nam, Seung Hyun ; Ju, Hyeon‐Ah ; Jung, Min‐Hyoung ; Jeong, Hu Young ; Kim, Young‐Min ; Wong, Cindy ; Elzein, Radwan ; Addou, Rafik ; Stoerzinger, Kelsey A. ; Choi, Woo Seok</creator><creatorcontrib>Lee, Jegon ; Adiga, Prajwal ; Lee, Sang A ; Nam, Seung Hyun ; Ju, Hyeon‐Ah ; Jung, Min‐Hyoung ; Jeong, Hu Young ; Kim, Young‐Min ; Wong, Cindy ; Elzein, Radwan ; Addou, Rafik ; Stoerzinger, Kelsey A. ; Choi, Woo Seok ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub‐surface layers was investigated by employing atomic‐scale thickness control of the La0.7Sr0.3MnO3 (LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non‐monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3 heterostructures. The observation leads to the definition of an “electrochemically‐relevant depth” on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core‐shell architectures.
Electrochemically relevant “depth” is characterized by employing epitaxial perovskite oxide heterostructures with atomic‐scale precision thickness control. A layer ≈10 u.c. (≈4 nm) below the surface (electrolyte/electrode interface) is shown to influence the electrocatalytic activity from thickness dependent measurements. The authors′ study redefines the “electrochemical surface” by including the contribution from the sub‐surface layers.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202103632</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>atomic scale precision ; Catalysts ; Catalytic activity ; electrocatalysis ; Electrolytes ; Electrolytic cells ; epitaxial oxide thin film ; Heterostructures ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Nanomaterials ; Nanoparticles ; Nanotechnology ; oxygen evolution reaction ; Oxygen evolution reactions ; sub-surface layer ; Surface layers ; Thickness ; Thin films</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-12, Vol.17 (49), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2872-6191 ; 0000000228726191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202103632$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202103632$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2460505$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jegon</creatorcontrib><creatorcontrib>Adiga, Prajwal</creatorcontrib><creatorcontrib>Lee, Sang A</creatorcontrib><creatorcontrib>Nam, Seung Hyun</creatorcontrib><creatorcontrib>Ju, Hyeon‐Ah</creatorcontrib><creatorcontrib>Jung, Min‐Hyoung</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Kim, Young‐Min</creatorcontrib><creatorcontrib>Wong, Cindy</creatorcontrib><creatorcontrib>Elzein, Radwan</creatorcontrib><creatorcontrib>Addou, Rafik</creatorcontrib><creatorcontrib>Stoerzinger, Kelsey A.</creatorcontrib><creatorcontrib>Choi, Woo Seok</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Contribution of the Sub‐Surface to Electrocatalytic Activity in Atomically Precise La0.7Sr0.3MnO3 Heterostructures</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub‐surface layers was investigated by employing atomic‐scale thickness control of the La0.7Sr0.3MnO3 (LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non‐monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3 heterostructures. The observation leads to the definition of an “electrochemically‐relevant depth” on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core‐shell architectures.
Electrochemically relevant “depth” is characterized by employing epitaxial perovskite oxide heterostructures with atomic‐scale precision thickness control. A layer ≈10 u.c. (≈4 nm) below the surface (electrolyte/electrode interface) is shown to influence the electrocatalytic activity from thickness dependent measurements. The authors′ study redefines the “electrochemical surface” by including the contribution from the sub‐surface layers.</description><subject>atomic scale precision</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>electrocatalysis</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>epitaxial oxide thin film</subject><subject>Heterostructures</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>sub-surface layer</subject><subject>Surface layers</subject><subject>Thickness</subject><subject>Thin films</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhhdRUKtXz0HPrZNkP4-l-AVbFKrnkJ1OMLLdaJJV9uZP8Df6S9xS6Wlm4GFm3idJLjjMOIC4Dpu2nQkQHGQuxUFywnMup3kpqsN9z-E4OQ3hDUBykRYnSVy4Lnrb9NG6jjnD4iuxVd_8fv-sem80EouO3bSE0TvUUbdDtMjmGO2njQOzHZtHt7Go23ZgT57QBmK1hlmx8jCTy-5RsnuK5F2IvsfYewpnyZHRbaDz_zpJXm5vnhf30_rx7mExr6dOjoGmAppSoCnyUmNVFkWGVYUlmaLJoMKmadIso1RoRFobkxpa81QKAsKyKgoj5SS53O0db1sV0EbCV3RdN6ZRIs0hg2yErnbQu3cfPYWo3lzvu_EvJXIoAVJZbqlqR33Zlgb17u1G-0FxUFv3aute7d2r1bKu95P8A-RTfH0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Lee, Jegon</creator><creator>Adiga, Prajwal</creator><creator>Lee, Sang A</creator><creator>Nam, Seung Hyun</creator><creator>Ju, Hyeon‐Ah</creator><creator>Jung, Min‐Hyoung</creator><creator>Jeong, Hu Young</creator><creator>Kim, Young‐Min</creator><creator>Wong, Cindy</creator><creator>Elzein, Radwan</creator><creator>Addou, Rafik</creator><creator>Stoerzinger, Kelsey A.</creator><creator>Choi, Woo Seok</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2872-6191</orcidid><orcidid>https://orcid.org/0000000228726191</orcidid></search><sort><creationdate>20211201</creationdate><title>Contribution of the Sub‐Surface to Electrocatalytic Activity in Atomically Precise La0.7Sr0.3MnO3 Heterostructures</title><author>Lee, Jegon ; Adiga, Prajwal ; Lee, Sang A ; Nam, Seung Hyun ; Ju, Hyeon‐Ah ; Jung, Min‐Hyoung ; Jeong, Hu Young ; Kim, Young‐Min ; Wong, Cindy ; Elzein, Radwan ; Addou, Rafik ; Stoerzinger, Kelsey A. ; Choi, Woo Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o3002-20b82cf768ac98775c99c8ef7b509cbbb455e42accedff4fed1432e0ec8977f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>atomic scale precision</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>electrocatalysis</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>epitaxial oxide thin film</topic><topic>Heterostructures</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>sub-surface layer</topic><topic>Surface layers</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jegon</creatorcontrib><creatorcontrib>Adiga, Prajwal</creatorcontrib><creatorcontrib>Lee, Sang A</creatorcontrib><creatorcontrib>Nam, Seung Hyun</creatorcontrib><creatorcontrib>Ju, Hyeon‐Ah</creatorcontrib><creatorcontrib>Jung, Min‐Hyoung</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Kim, Young‐Min</creatorcontrib><creatorcontrib>Wong, Cindy</creatorcontrib><creatorcontrib>Elzein, Radwan</creatorcontrib><creatorcontrib>Addou, Rafik</creatorcontrib><creatorcontrib>Stoerzinger, Kelsey A.</creatorcontrib><creatorcontrib>Choi, Woo Seok</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jegon</au><au>Adiga, Prajwal</au><au>Lee, Sang A</au><au>Nam, Seung Hyun</au><au>Ju, Hyeon‐Ah</au><au>Jung, Min‐Hyoung</au><au>Jeong, Hu Young</au><au>Kim, Young‐Min</au><au>Wong, Cindy</au><au>Elzein, Radwan</au><au>Addou, Rafik</au><au>Stoerzinger, Kelsey A.</au><au>Choi, Woo Seok</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of the Sub‐Surface to Electrocatalytic Activity in Atomically Precise La0.7Sr0.3MnO3 Heterostructures</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>17</volume><issue>49</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub‐surface layers was investigated by employing atomic‐scale thickness control of the La0.7Sr0.3MnO3 (LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non‐monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3 heterostructures. The observation leads to the definition of an “electrochemically‐relevant depth” on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core‐shell architectures.
Electrochemically relevant “depth” is characterized by employing epitaxial perovskite oxide heterostructures with atomic‐scale precision thickness control. A layer ≈10 u.c. (≈4 nm) below the surface (electrolyte/electrode interface) is shown to influence the electrocatalytic activity from thickness dependent measurements. The authors′ study redefines the “electrochemical surface” by including the contribution from the sub‐surface layers.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202103632</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2872-6191</orcidid><orcidid>https://orcid.org/0000000228726191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2021-12, Vol.17 (49), p.n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_osti_scitechconnect_2460505 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | atomic scale precision Catalysts Catalytic activity electrocatalysis Electrolytes Electrolytic cells epitaxial oxide thin film Heterostructures INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Nanomaterials Nanoparticles Nanotechnology oxygen evolution reaction Oxygen evolution reactions sub-surface layer Surface layers Thickness Thin films |
title | Contribution of the Sub‐Surface to Electrocatalytic Activity in Atomically Precise La0.7Sr0.3MnO3 Heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20the%20Sub%E2%80%90Surface%20to%20Electrocatalytic%20Activity%20in%20Atomically%20Precise%20La0.7Sr0.3MnO3%20Heterostructures&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lee,%20Jegon&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2021-12-01&rft.volume=17&rft.issue=49&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202103632&rft_dat=%3Cproquest_osti_%3E2608004385%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608004385&rft_id=info:pmid/&rfr_iscdi=true |