Alternative electron pathways of photosynthesis power green algal CO2 capture

Abstract Microalgae contribute to about half of global net photosynthesis, which converts sunlight into the chemical energy (ATP and NADPH) used to transform CO2 into biomass. Alternative electron pathways of photosynthesis have been proposed to generate additional ATP that is required to sustain CO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2024-05, Vol.36 (10)
Hauptverfasser: Peltier, Gilles, Stoffel, Carolyne, Findinier, Justin, Madireddi, Sai Kiran, Dao, Ousmane, Epting, Virginie, Morin, Amélie, Grossman, Arthur, Li-Beisson, Yonghua, Burlacot, Adrien
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title The Plant cell
container_volume 36
creator Peltier, Gilles
Stoffel, Carolyne
Findinier, Justin
Madireddi, Sai Kiran
Dao, Ousmane
Epting, Virginie
Morin, Amélie
Grossman, Arthur
Li-Beisson, Yonghua
Burlacot, Adrien
description Abstract Microalgae contribute to about half of global net photosynthesis, which converts sunlight into the chemical energy (ATP and NADPH) used to transform CO2 into biomass. Alternative electron pathways of photosynthesis have been proposed to generate additional ATP that is required to sustain CO2 fixation. However, the relative importance of each alternative pathway remains elusive. Here, we dissect and quantify the contribution of cyclic, pseudo-cyclic, and chloroplast-to-mitochondrion electron flows for their ability to sustain net photosynthesis in the microalga Chlamydomonas reinhardtii. We show that (i) each alternative pathway can provide sufficient additional energy to sustain high CO2 fixation rates, (ii) the alternative pathways exhibit cross-compensation, and (iii) the activity of at least one of the three alternative pathways is necessary to sustain photosynthesis. We further show that all pathways have very different efficiencies at energizing CO2 fixation, with the chloroplast–mitochondrion interaction being the most efficient. Overall, our data lay bioenergetic foundations for biotechnological strategies to improve CO2 capture and fixation.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2455055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455055</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_24550553</originalsourceid><addsrcrecordid>eNqNzb0KwjAUQOEMCtafd7i4F9LaKI5SFBdxcS8h3DaRkITcq6Vvr4MP4HSWD85MFJVsZNnsVbUQS6KnlLI6VMdC3E6eMQfN7o2AHg3nGCBptqOeCGIPyUaONAW2SI4gxREzDBkxgPaD9tDeazA68SvjWsx77Qk3v67E9nJ-tNcyEruOjGM01sQQvp-ubpSSSu3-Qh8MrT3F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Alternative electron pathways of photosynthesis power green algal CO2 capture</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Peltier, Gilles ; Stoffel, Carolyne ; Findinier, Justin ; Madireddi, Sai Kiran ; Dao, Ousmane ; Epting, Virginie ; Morin, Amélie ; Grossman, Arthur ; Li-Beisson, Yonghua ; Burlacot, Adrien</creator><creatorcontrib>Peltier, Gilles ; Stoffel, Carolyne ; Findinier, Justin ; Madireddi, Sai Kiran ; Dao, Ousmane ; Epting, Virginie ; Morin, Amélie ; Grossman, Arthur ; Li-Beisson, Yonghua ; Burlacot, Adrien</creatorcontrib><description>Abstract Microalgae contribute to about half of global net photosynthesis, which converts sunlight into the chemical energy (ATP and NADPH) used to transform CO2 into biomass. Alternative electron pathways of photosynthesis have been proposed to generate additional ATP that is required to sustain CO2 fixation. However, the relative importance of each alternative pathway remains elusive. Here, we dissect and quantify the contribution of cyclic, pseudo-cyclic, and chloroplast-to-mitochondrion electron flows for their ability to sustain net photosynthesis in the microalga Chlamydomonas reinhardtii. We show that (i) each alternative pathway can provide sufficient additional energy to sustain high CO2 fixation rates, (ii) the alternative pathways exhibit cross-compensation, and (iii) the activity of at least one of the three alternative pathways is necessary to sustain photosynthesis. We further show that all pathways have very different efficiencies at energizing CO2 fixation, with the chloroplast–mitochondrion interaction being the most efficient. Overall, our data lay bioenergetic foundations for biotechnological strategies to improve CO2 capture and fixation.</description><identifier>ISSN: 1040-4651</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><ispartof>The Plant cell, 2024-05, Vol.36 (10)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000165618432 ; 0000000333188778 ; 0000000174346416 ; 0000000222263931 ; 0000000218201033 ; 0000000270405770 ; 0000000237475881 ; 0000000310641816 ; 0000000240786250 ; 0000000190198900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2455055$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Peltier, Gilles</creatorcontrib><creatorcontrib>Stoffel, Carolyne</creatorcontrib><creatorcontrib>Findinier, Justin</creatorcontrib><creatorcontrib>Madireddi, Sai Kiran</creatorcontrib><creatorcontrib>Dao, Ousmane</creatorcontrib><creatorcontrib>Epting, Virginie</creatorcontrib><creatorcontrib>Morin, Amélie</creatorcontrib><creatorcontrib>Grossman, Arthur</creatorcontrib><creatorcontrib>Li-Beisson, Yonghua</creatorcontrib><creatorcontrib>Burlacot, Adrien</creatorcontrib><title>Alternative electron pathways of photosynthesis power green algal CO2 capture</title><title>The Plant cell</title><description>Abstract Microalgae contribute to about half of global net photosynthesis, which converts sunlight into the chemical energy (ATP and NADPH) used to transform CO2 into biomass. Alternative electron pathways of photosynthesis have been proposed to generate additional ATP that is required to sustain CO2 fixation. However, the relative importance of each alternative pathway remains elusive. Here, we dissect and quantify the contribution of cyclic, pseudo-cyclic, and chloroplast-to-mitochondrion electron flows for their ability to sustain net photosynthesis in the microalga Chlamydomonas reinhardtii. We show that (i) each alternative pathway can provide sufficient additional energy to sustain high CO2 fixation rates, (ii) the alternative pathways exhibit cross-compensation, and (iii) the activity of at least one of the three alternative pathways is necessary to sustain photosynthesis. We further show that all pathways have very different efficiencies at energizing CO2 fixation, with the chloroplast–mitochondrion interaction being the most efficient. Overall, our data lay bioenergetic foundations for biotechnological strategies to improve CO2 capture and fixation.</description><issn>1040-4651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNzb0KwjAUQOEMCtafd7i4F9LaKI5SFBdxcS8h3DaRkITcq6Vvr4MP4HSWD85MFJVsZNnsVbUQS6KnlLI6VMdC3E6eMQfN7o2AHg3nGCBptqOeCGIPyUaONAW2SI4gxREzDBkxgPaD9tDeazA68SvjWsx77Qk3v67E9nJ-tNcyEruOjGM01sQQvp-ubpSSSu3-Qh8MrT3F</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Peltier, Gilles</creator><creator>Stoffel, Carolyne</creator><creator>Findinier, Justin</creator><creator>Madireddi, Sai Kiran</creator><creator>Dao, Ousmane</creator><creator>Epting, Virginie</creator><creator>Morin, Amélie</creator><creator>Grossman, Arthur</creator><creator>Li-Beisson, Yonghua</creator><creator>Burlacot, Adrien</creator><general>Oxford University Press</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000165618432</orcidid><orcidid>https://orcid.org/0000000333188778</orcidid><orcidid>https://orcid.org/0000000174346416</orcidid><orcidid>https://orcid.org/0000000222263931</orcidid><orcidid>https://orcid.org/0000000218201033</orcidid><orcidid>https://orcid.org/0000000270405770</orcidid><orcidid>https://orcid.org/0000000237475881</orcidid><orcidid>https://orcid.org/0000000310641816</orcidid><orcidid>https://orcid.org/0000000240786250</orcidid><orcidid>https://orcid.org/0000000190198900</orcidid></search><sort><creationdate>20240513</creationdate><title>Alternative electron pathways of photosynthesis power green algal CO2 capture</title><author>Peltier, Gilles ; Stoffel, Carolyne ; Findinier, Justin ; Madireddi, Sai Kiran ; Dao, Ousmane ; Epting, Virginie ; Morin, Amélie ; Grossman, Arthur ; Li-Beisson, Yonghua ; Burlacot, Adrien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_24550553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peltier, Gilles</creatorcontrib><creatorcontrib>Stoffel, Carolyne</creatorcontrib><creatorcontrib>Findinier, Justin</creatorcontrib><creatorcontrib>Madireddi, Sai Kiran</creatorcontrib><creatorcontrib>Dao, Ousmane</creatorcontrib><creatorcontrib>Epting, Virginie</creatorcontrib><creatorcontrib>Morin, Amélie</creatorcontrib><creatorcontrib>Grossman, Arthur</creatorcontrib><creatorcontrib>Li-Beisson, Yonghua</creatorcontrib><creatorcontrib>Burlacot, Adrien</creatorcontrib><collection>OSTI.GOV</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peltier, Gilles</au><au>Stoffel, Carolyne</au><au>Findinier, Justin</au><au>Madireddi, Sai Kiran</au><au>Dao, Ousmane</au><au>Epting, Virginie</au><au>Morin, Amélie</au><au>Grossman, Arthur</au><au>Li-Beisson, Yonghua</au><au>Burlacot, Adrien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative electron pathways of photosynthesis power green algal CO2 capture</atitle><jtitle>The Plant cell</jtitle><date>2024-05-13</date><risdate>2024</risdate><volume>36</volume><issue>10</issue><issn>1040-4651</issn><abstract>Abstract Microalgae contribute to about half of global net photosynthesis, which converts sunlight into the chemical energy (ATP and NADPH) used to transform CO2 into biomass. Alternative electron pathways of photosynthesis have been proposed to generate additional ATP that is required to sustain CO2 fixation. However, the relative importance of each alternative pathway remains elusive. Here, we dissect and quantify the contribution of cyclic, pseudo-cyclic, and chloroplast-to-mitochondrion electron flows for their ability to sustain net photosynthesis in the microalga Chlamydomonas reinhardtii. We show that (i) each alternative pathway can provide sufficient additional energy to sustain high CO2 fixation rates, (ii) the alternative pathways exhibit cross-compensation, and (iii) the activity of at least one of the three alternative pathways is necessary to sustain photosynthesis. We further show that all pathways have very different efficiencies at energizing CO2 fixation, with the chloroplast–mitochondrion interaction being the most efficient. Overall, our data lay bioenergetic foundations for biotechnological strategies to improve CO2 capture and fixation.</abstract><cop>United States</cop><pub>Oxford University Press</pub><orcidid>https://orcid.org/0000000165618432</orcidid><orcidid>https://orcid.org/0000000333188778</orcidid><orcidid>https://orcid.org/0000000174346416</orcidid><orcidid>https://orcid.org/0000000222263931</orcidid><orcidid>https://orcid.org/0000000218201033</orcidid><orcidid>https://orcid.org/0000000270405770</orcidid><orcidid>https://orcid.org/0000000237475881</orcidid><orcidid>https://orcid.org/0000000310641816</orcidid><orcidid>https://orcid.org/0000000240786250</orcidid><orcidid>https://orcid.org/0000000190198900</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2024-05, Vol.36 (10)
issn 1040-4651
language eng
recordid cdi_osti_scitechconnect_2455055
source Oxford University Press Journals All Titles (1996-Current)
title Alternative electron pathways of photosynthesis power green algal CO2 capture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20electron%20pathways%20of%20photosynthesis%20power%20green%20algal%20CO2%20capture&rft.jtitle=The%20Plant%20cell&rft.au=Peltier,%20Gilles&rft.date=2024-05-13&rft.volume=36&rft.issue=10&rft.issn=1040-4651&rft_id=info:doi/&rft_dat=%3Costi%3E2455055%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true